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Problem definition: signomial terms

▶ Exponent vector: α = (α1, α2, . . . , αn) ∈ Rn.

▶ Signomial term: xα :=
∏n

i=1 x
αi
i , for x ∈ Rn

++.

▶ Examples: x−1
1 x12 , x0.51 x−10

2 x1.23 .

▶ When α ∈ Zn
+, monomial term.

▶ Nonconvex.
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Problem definition: Signomial Programming (SP)

min c · x (1a)

∀j ∈ [1 : m]
∑
k∈Kj

ajkx
αk ≤0 (1b)

∀i ∈ [1 : n] xi ∈[x i , x i ] ⊂ R++ (1c)
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Solution methods of global solvers

An example.

▶ For example, x1.91 x−0.1
2 x43 .

▶ Introduce a lifting variable, y = x1.91 x−0.1
2 x43 ;

▶ Introduce auxiliary variables y1 = x1.91 , y2 = x−0.1
2 , y3 = x43 ;

▶ Construct convex relaxations for y1 = x1.91 , y2 = x−0.1
2 ,

y3 = x43 ;

▶ Relax multilinear constraint y = y1y2y3.
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Normalized formulation of signomial sets

W.l.o.g., we consider the signomial set as the hypograph set

Ss = {(x , y) ∈ Rn
+ × R+ : y ≤ xα}.

α can have negative or positive entries.

Decompose

Ss = {(x , y) ∈ Rn
+ × R+ : y ≤ xα

−
− xα

+

+ }.
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Normalized formulation of signomial sets (continued)

Rearrange negative/positive power terms

Ss = {(x , y) ∈ Rn
+ × R+ : yx−α−

− ≤ xα
+

+ }.

Change of variables

Ss ={(u, v) ∈ Rh
+ × Rl

+ : uβ ≤ vγ},

β > 0, γ > 0.
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Normalized formulation of signomial set

Scale β, γ such that max(∥β∥1, ∥γ∥1) ≤ 1,

Ss = {(u, v) ∈ Rh
+ × Rl

+ : uβ ≤ vγ}

Denote by ψα(x) = xα,

Ss = {(u, v) ∈ Rh
+ × Rl

+ : ψβ(u)− ψγ(v) ≤ 0}
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A lift of nice properties

Ss = {(u, v) ∈ Rh
+ × Rl

+ : ψβ(u)− ψγ(v) ≤ 0}

▶ ψβ, ψγ are concave, ψβ(u)− ψγ(v) is a difference-of-concave
(DCC) function;

▶ If max(∥β∥1, ∥γ∥1) = 1, at least one of them is
positively-homogeneous of degree-1;

▶ Assume both u, v are in box constraints, then ψβ, ψγ are
supermodular.
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Intersection cuts: a standard procedure

Definition
Given S ∈ Rp, a closed set C is called S-free, if the following
conditions are satisfied:

1. C is convex;

2. inter(C) ∩ S = ∅.
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Intersection cut

Intersection cut is a framework.

▶ Given a non-convex set S, an S-free set, and a corner
polyhedron P containing S.

▶ Separation (Zambelli et al., Integer Programming): intersect
the corner polyhedron with the set C.

▶ Nonlinear programming (Tuy 1964), S is the epigraph of a
concave function;

▶ Recent development in MINLPs: outer product sets, bilinear
sets, and quadratic sets.
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The Geometry of intersection cuts
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S-free sets of level sets in NLP

Theorem (Khamisov 1999,Serrano 2019)

Assume S := {z ∈ Rp : f1(z)− f2(z) ≤ 0}, where f1, f2 are concave
functions. Then, for z̆ ∈ dom(f2),
Cẑ := {z ∈ Rp : f1(z)− f2(ẑ)−∇f2(ẑ)

⊤(z − ẑ) ≥ 0} is a S-free
set.

Theorem (Serrano 2021)

Assume S := {z ∈ Rp : f1(z)− f2(z) ≤ 0}, where f1, f2 are concave
functions and positive-homogeneous of degree-1. Then, for
z̆ ∈ dom(f2), Cẑ := {z ∈ Rp : f1(z)− f2(ẑ)−∇f2(ẑ)

⊤(z − ẑ) ≥ 0}
is a maximal S-free set.
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Signomial-free sets

Corollary

{(u, v) ∈ Rh
+ × Rl

+ : ψβ(u)− ψγ(ṽ)−∇(ψγ(ṽ)) · (v − ṽ) ≥ 0} is
a signomial-free set.

Assume max(∥β∥1, ∥γ∥1) = 1 (one function is
positive-homogeneous of degree-1), we prove a stronger result

Theorem
{(u, v) ∈ Rh

+ × Rl
+ : ψβ(u)− ψγ(ṽ)−∇ψγ(ṽ) · (v − ṽ) ≥ 0} is a

maximal signomial-free set.
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Signomial set on box constraint

Ss = {(u, v) ∈ Rh
+ × Rl

+ : ψβ(u) ≤ ψγ(v)},

Recall that ψβ(u), ψγ(v) are concave.

We assume u ∈ U := [u, u] is a box constraint. Consider now

Ss ={(u, v) ∈ U × Rl
+ : ψβ(u)− ψγ(v) ≤ 0}.

15 / 30



Signomial set on box constraint

Ss = {(u, v) ∈ Rh
+ × Rl

+ : ψβ(u) ≤ ψγ(v)},

Recall that ψβ(u), ψγ(v) are concave.
We assume u ∈ U := [u, u] is a box constraint. Consider now

Ss ={(u, v) ∈ U × Rl
+ : ψβ(u)− ψγ(v) ≤ 0}.

15 / 30



Convex under-estimators

Constructing convex under-estimators of ψβ(u) ?

▶ Using supermodularity: supermodular relaxation.

▶ Factorization and relaxation: factorization relaxation.
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Supermodular relaxation: supermodular functions

Definition
Given D =

∏
1≤i≤n Di (Di ⊂ R), a function f : D → R is

supermodular on D, if for every x , y ∈ D,
f (x) + f (y) ≤ f (max{x , y}) + f (min{x , y}).

Lemma
ψβ is supermodular on U .
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Supermodular relaxation: transformation

Definition
Define

g : [0, 1]h → R : w → g(w) :=
∏

1≤j≤h

((uj − uj)wj + uj)
βj − uβ,

π : [0, 1]h → U : w → π(w) := ((u1−u1)w1+u1, · · · , (uh−uh)wh+uh),

and

π−1 : U → [0, 1]h : u → π−1(u) := (
u1 − u1

u1 − u1
, · · · ,

uh − uh

uh − uh
).
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Supermodular relaxation: after transformation

Theorem
The transformed function g is concave and supermodular on
[0, 1]h, and convex-extendable from vertices.
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Supermodular relaxation: affine underestimating functions
for g

Theorem
Let H := {1, · · · , h}, let χ : 2H → {0, 1}H be the indicator
function over subsets of H, and define
ρ(j ,S) := g(χS∪{j})− g(χS) (j ∈ H,S ⊆ H) the increment
function of g. Then,

g(χS) +
∑

j∈H∖S

ρ(j , S)wj −
∑
j∈S

ρ(j ,N ∖ {j})(1− wj) ≤ g(w),

g(χS) +
∑

j∈H∖S

ρ(j ,∅)wj −
∑
j∈S

ρ(j , S ∖ {j})(1− wj) ≤ g(w), S ⊆ H,

(2)

Not an envelope. Separation can be done by a heuristic
(Nemhauser 79).
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Supermodular relaxation: the formulation

The proposition leads to the Supermodular Relaxation:

Ssup =
{
(u, v) ∈ U × Rl :

(
π−1(u), ψγ(v)− ψβ(u)

)
satisfies (2)

}
.
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Factorization relaxation

Ss ={(u, v) ∈ U × Rl
+ : ψβ(u)− ψγ(v) ≤ 0}.
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Factorization relaxation: factorization (lifting)

Theorem
Given the power function ψβ(u), let β̄ ∈ Rh+1

+ satisfy that
β̄[h] = β[h] and β̄0 = 1−

∑
j∈[h] βj , let ζ ∈ Rh

+ satisfy that

ζj = β̄j/(
∑

i∈[0:j] β̄i ). Denote

Eβ := {(u, t) ∈ Rh
+ × R : ∃s ∈ Rh+1

+ sh+1 = t s1 = 1

∀j ∈ [0 : h] u
ζj
j s

1−ζj
j ≤ sj+1}.

Then, epiRh
+
(ψβ) = Eβ.
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Factorization relaxation: convexification

Eβ := {(u, t) ∈ Rh
+ × R : ∃s ∈ Rh+1

+ sh+1 = t s1 = 1

∀j ∈ [0 : h] u
ζj
j s

1−ζj
j ≤ sj+1}.

Compute bounds on s, replace the concave term u
ζj
j s

1−ζj
j by its

convex envelope f j (a piece-wise function) over the box constraint.

Eβ := {(u, t) ∈ Rh
+ × R : ∃s ∈ Rh+1

+ sh+1 = t s1 = 1

∀j ∈ [0 : h] f j(uj , sj) ≤ sj+1}.
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Factorization relaxation: the extended formulation

Get rid of multilinear terms.
A convex relaxation in an extended formulation

Slc := {(u, v) ∈ U × Rl : ∃s ∈ S ψγ(v) ≥ sh+1 s1 = 1

∀j ∈ [0 : h] f j(uj , sj) ≤ sj+1}.
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Factorization relaxation: projection

Define recursively F j(u) := f j(uj , f
j−1(uj−1, · · · )) (j ∈ [0 : h]). F h

is a polyhedral convex function.

Slc = {(u, v) ∈ U × Rl : ψγ(v) ≥ F h(u)}.

The gradient of F h can be computed in a linear time.
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Development environment

▶ Software: SCIP 8.0.0, CPLEX 22.1, and Ipopt 3.14.7.

▶ Hardware: Intel Xeon W-2245 CPU @ 3.90GHz, 126GB main
memory.

▶ Data: From MINLPLib, C (68 continuous instances), MI (189
mixed-integer instances), and All.
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Numerical results

▶ Default: SCIP’s default;

▶ ICUT: only intersection cuts;

▶ SOCUT: only outer approximation cuts from supermodular
relaxation;

▶ POCUT: only outer approximation cuts from facotrization
relaxations;

Closed root gap function: 0-100%, the larger, the better.
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Numerical results

Benchmark Default ICUT SOCUT POCUT

solved closed solved closed relative solved closed relative solved closed relative

C-clean 11/68 0.38 13/68 0.47 1.24 11/68 0.4 1.06 13/67 0.41 1.09
C-affected 4/47 0.4 6/47 0.53 1.34 4/47 0.43 1.08 6/46 0.45 1.13
MI-clean 12/189 0.32 12/189 0.35 1.1 16/187 0.33 1.01 11/183 0.33 1.04
MI-affected 7/120 0.44 7/120 0.49 1.12 11/118 0.45 1.02 6/114 0.46 1.06
All-clean 23/257 0.34 25/257 0.38 1.14 27/255 0.35 1.03 24/250 0.35 1.05
All-affected 11/167 0.43 13/167 0.5 1.18 15/165 0.44 1.04 12/160 0.46 1.08

Table: Summary of the closed root gaps and relative improvement to the
Default setting

▶ Intersection cuts are strongest;

▶ Supermodular outer approximation is weak;

▶ Facotrization outer approximation is a good alternative to the
conventional factorization.
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Future development

▶ Implementing a signomial term handler in a solver may be
useful, to detect signomials, reformulate (eliminate
intermediate variables), cut (initial LP estimation +
separation);

▶ (Unexploited): both sides of the DCC formulation are
monotone, useful for propagation and presolving?
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