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Problem definition: signomial terms

Exponent vector: o = (g, g, ..., ap) € R™.

. . o . TN a;j n

Signomial term: x® :=[[; x{, for x € R} .
S| 0.5,-10,1.2

Examples: x; "x5,  x777x, x5

When o € Z", monomial term.

vVvYvyyVvyy

Nonconvex.
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Problem definition: Signomial Programming (SP)

min c-x (1a)

Vje[l:m] Z ajkxak <0 (1b)
kEICj

Vie[l:n] xi €[xj, Xi] C Ryt (1c)
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Solution methods of global solvers

An example.
P> For example, x19 X5 01y 3
> Introduce a lifting variable, y = xi-° 0 1x3,

> Introduce auxiliary variables y; = x{- 9, y2 =% 0t s = x4
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Solution methods of global solvers

An example.
P> For example, x19 X5 01y 3
> Introduce a lifting variable, y = xi-° 0 1x3,

> Introduce auxiliary variables y; = xi-° y2 =x, 01, y3 = x4
> Construct convex relaxations for y; = x19, y» = x; S0
y3 = X3.

» Relax multilinear constraint y = y1ysys3.
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Normalized formulation of signomial sets

W.l.0.g., we consider the signomial set as the hypograph set
Ss={(x,y) e Rl xRy :y < x“}.

« can have negative or positive entries.
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Normalized formulation of signomial sets

W.l.0.g., we consider the signomial set as the hypograph set
Ss={(x,y) e Rl xRy :y < x“}.
« can have negative or positive entries. Decompose

Ss={(x,y) eR}l xRy :y < Xf‘_xi+}.
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Normalized formulation of signomial sets (continued)

Rearrange negative/positive power terms

Ss={(x,y) eRL xRy 1 yx=* < xj'_ﬁ}.
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Normalized formulation of signomial sets (continued)

Rearrange negative/positive power terms
Ss={(x,y) eRL xRy 1 yx=* < xj'_ﬁ}.
Change of variables
Ss ={(u,v) eRE xR : u? < v,

8 >0,v>0.
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Normalized formulation of signomial set

Scale 3, such that max(||5]|1, [|v]1) < 1,
«S'S:{(u,v)E]Rf’r xRﬂr: u? < vy
Denote by ¥*(x) = x¢,

Ss={(u,v) € ]R:’_ X ]RQ_ : Q,Z)B(u) —¢7(v) <0}
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A lift of nice properties

Ss = {(u,v) e R x R 1 4P (u) — 7 (v) < 0}

> P 47 are concave, 1% (u) —1)7(v) is a difference-of-concave
(DCCQ) function;

» If max(||B]]1, ||v|l1) = 1, at least one of them is
positively-homogeneous of degree-1;

» Assume both u, v are in box constraints, then ¢%, 47 are
supermodular.
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Intersection cuts: a standard procedure

Definition
Given § € RP, a closed set C is called S-free, if the following
conditions are satisfied:

1. C is convex;

2. inter(C)NS = 0.
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Intersection cut

Intersection cut is a framework.
» Given a non-convex set S, an S-free set, and a corner
polyhedron P containing S.

» Separation (Zambelli et al., Integer Programming): intersect
the corner polyhedron with the set C.
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Intersection cut

Intersection cut is a framework.

» Given a non-convex set S, an S-free set, and a corner
polyhedron P containing S.

» Separation (Zambelli et al., Integer Programming): intersect
the corner polyhedron with the set C.

» Nonlinear programming (Tuy 1964), S is the epigraph of a
concave function;

P Recent development in MINLPs: outer product sets, bilinear
sets, and quadratic sets.
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The Geometry of intersection cuts




S-free sets of level sets in NLP

Theorem (Khamisov 1999,Serrano 2019)

Assume S 1= {z € RP : fi(z) — fr(z) < 0}, where fi, f» are concave
functions. Then, for z € dom(f),

Cs:={z€RP:fi(2) — K(2) — VH(2)T(z — 2) > 0} is a S-free
set.

Theorem (Serrano 2021)

Assume S := {z € RP : fi(z) — fr(z) < 0}, where f1, f, are concave
functions and positive-homogeneous of degree-1. Then, for

? € dom(f), C; == {z € RP: fi(z) — H(2) — VAH(2)T(z - 2) > 0}
is a maximal S-free set.
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Signomial-free sets

Corollary

{(u,v) € R xR = 9P (u) —97(7) = V(¥7(V)) - (v = 7) 2 0} is
a signomial-free set.

Assume max(||3]1, |7|l1) = 1 (one function is
positive-homogeneous of degree-1), we prove a stronger result
Theorem

{(u,v) e RE x R! : B(u) —47(V) — VI (V) - (v—T) >0} is a
maximal signomial-free set.
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Signomial set on box constraint

Ss={(u,v) € RL xRl : 9%(u) <97(v)},
Recall that 1?(u), " (v) are concave.
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Signomial set on box constraint

Se={(u,v) eRY xR () <97(v)},

Recall that 1?(u), " (v) are concave.
We assume u € U := [u, 1] is a box constraint. Consider now

Ss ={(u,v) €U x Ry = ¢ (u) =47 (v) < 0}.
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Convex under-estimators

Constructing convex under-estimators of 1/%(u) ?
» Using supermodularity: supermodular relaxation.

» Factorization and relaxation: factorization relaxation.
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Supermodular relaxation: supermodular functions

Definition

Given D = [[;<;<, Di (Di C R), a function f : D — R is
supermodular on D, if for every x,y € D,

f(x)+ f(y) < f(max{x,y})+ f (min{x, y}).

Lemma
P is supermodular on U.
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Supermodular relaxation: transformation

Definition
Define

g: 01" > R:w—gw) =[] (@G- uw)w +u)? -,
1<j<h o o
7:[0,1)" = U :w — 7(w) = ((GT—ur)witur, -, (Tp—up)Whtup),
and

h—un Un — Un

1 h 1
:Z/{ 0’1 . == g, = .
T = [0,1]":u— 7 *(uv) (Ul—ﬂ —.
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Supermodular relaxation: after transformation

Theorem
The transformed function g is concave and supermodular on
[0,1]", and convex-extendable from vertices.
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Supermodular relaxation: affine underestimating functions

for g

Theorem
Let H:={1,---  h}, let x : 2" — {0,1}" be the indicator
function over subsets of H, and define

pU,S) = g(xsugy) — &lxs) (G € H,S € H) the increment
function of g. Then,

glxs)+ Y. pl.S)wi— > pl, N~ {1 - wy) < g(w),

JjEH\S JjES
jeEH\S JES

(2)

Not an envelope. Separation can be done by a heuristic
(Nemhauser 79).
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Supermodular relaxation: the formulation

The proposition leads to the Supermodular Relaxation:

Seup = {(u, v)eU xR <7r_1(u),¢7(v) - wﬂ(g)) satisfies (2)} .
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Factorization relaxation

Ss ={(u,v) €U x R, : P(u) —¢7(v) <0}
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Factorization relaxation: factorization (lifting)

Theorem )
Given the power function VO (u), let B € RETY satisfy that
Bin) = Biwy and fo =1 — ng[h] Bj, let ¢ € Ri satisfy that

G = ﬁj/(z,-e[o:j] B;). Denote

Ep = {(u, t) G]Ri XR:HSERI_:_JrlSh—H =tsp =1

vjie0: hufs Y < sl

Then, epiRi (¥P) = &s.
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Factorization relaxation: convexification

Ep = {(u,t) € ]Rf’ir xR:3ds € R{:_Jrlsh—i-l =tsp =1
Vj € [0: A uf"sjl_g < sjy1}

P 1-CG o .
Compute bounds on s, replace the concave term ufjsj G by its

convex envelope f/ (a piece-wise function) over the box constraint.

s ={(u,t) € Rﬂ’r xR:3ds € ]lelshﬂ =tsp =1
Vj €[0: h f(uj,s5) < spp1}-
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Factorization relaxation: the extended formulation

Get rid of multilinear terms.
A convex relaxation in an extended formulation

Sic i ={(u,v) eU xR :Is € SYI(v) > spy15 =1
Vj e [0 : h] fj(Uj,Sj) < Sj+1}.
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Factorization relaxation: projection

Define recursively F/(u) := f(u;, = Y(uj_1,---)) (G €[0: h]). F"
is a polyhedral convex function.

Sic = {(u,v) eU x R : 7 (v) > FP(u)}.

The gradient of F" can be computed in a linear time.
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Development environment

» Software: SCIP 8.0.0, CPLEX 22.1, and lpopt 3.14.7.

» Hardware: Intel Xeon W-2245 CPU @ 3.90GHz, 126GB main
memory.

» Data: From MINLPLib, C (68 continuous instances), MI (189
mixed-integer instances), and All.
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Numerical results

» Default: SCIP's default;

ICUT: only intersection cuts;

v

» SOCUT: only outer approximation cuts from supermodular
relaxation;

» POCUT: only outer approximation cuts from facotrization
relaxations;

Closed root gap function: 0-100%, the larger, the better.
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Numerical results

Benchmark Default ICuT SOCUT POCUT

solved closed solved closed relative solved closed relative solved closed relative
C-clean 11/68 0.38 13/68  0.47 124 11/68 0.4 1.06 13/67 0.41 1.09
C-affected 4/47 0.4 6/47 0.53 134 4/47 0.43 1.08 6/46 0.45 1.13
MI-clean 12/189 0.32 12/189 0.35 1.1 16/187 0.33 1.01 11/183 0.33 1.04

MI-affected 7/120 044 7/120 0.49 112 11/118 0.45 1.02 6/114  0.46 1.06
All-clean 23/257 0.34 25/257 0.38 1.14 27/255 0.35 1.03 24/250 0.35 1.05
All-affected 11/167 0.43 13/167 0.5 1.18 15/165 0.44 1.04 12/160 0.46 1.08

Table: Summary of the closed root gaps and relative improvement to the
Default setting

> Intersection cuts are strongest;
» Supermodular outer approximation is weak;

» Facotrization outer approximation is a good alternative to the
conventional factorization.
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Future development

» Implementing a signomial term handler in a solver may be
useful, to detect signomials, reformulate (eliminate
intermediate variables), cut (initial LP estimation +
separation);

» (Unexploited): both sides of the DCC formulation are
monotone, useful for propagation and presolving?
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