(Three) Cutting Planes for Signomial Programming

Liding Xu Claudia D'Ambrosio, Sonia Haddad Vanier, Leo Liberti

OptimiX, LIX, École Polytechnique

April, 2022

1/30

Introduction to Signomial Programming

Normalized form of signomial set

Signomial-free sets and intersection cuts

Convex relaxation and outer approximation cuts

Experiments and results

Conclusions

- Exponent vector: $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{R}^n$.
- Signomial term: $x^{\alpha} := \prod_{i=1}^{n} x_i^{\alpha_i}$, for $x \in \mathbb{R}_{++}^{n}$.
- Examples: $x_1^{-1}x_2^1$, $x_1^{0.5}x_2^{-10}x_3^{1.2}$.
- When $\alpha \in \mathbb{Z}_+^n$, monomial term.
- Nonconvex.

Problem definition: Signomial Programming (SP)

$$\begin{array}{ll} \min & c \cdot x & (1a) \\ \forall j \in [1:m] & \sum_{k \in \mathcal{K}_j} a_{jk} x^{\alpha^k} \leq 0 & (1b) \\ \forall i \in [1:n] & x_i \in [\underline{x}_i, \overline{x}_i] \subset \mathbb{R}_{++} & (1c) \end{array}$$

An example.

- For example, $x_1^{1.9}x_2^{-0.1}x_3^4$.
- Introduce a lifting variable, $y = x_1^{1.9}x_2^{-0.1}x_3^4$;
- Introduce auxiliary variables $y_1 = x_1^{1.9}$, $y_2 = x_2^{-0.1}$, $y_3 = x_3^4$;

An example.

- For example, $x_1^{1.9}x_2^{-0.1}x_3^4$.
- Introduce a lifting variable, $y = x_1^{1.9} x_2^{-0.1} x_3^4$;
- Introduce auxiliary variables $y_1 = x_1^{1.9}$, $y_2 = x_2^{-0.1}$, $y_3 = x_3^4$;
- Construct convex relaxations for $y_1 = x_1^{1.9}$, $y_2 = x_2^{-0.1}$, $y_3 = x_3^4$;
- Relax multilinear constraint $y = y_1y_2y_3$.

W.I.o.g., we consider the signomial set as the hypograph set

$$\mathcal{S}_{\mathrm{s}} = \{(x, y) \in \mathbb{R}^n_+ \times \mathbb{R}_+ : y \leq x^{\alpha}\}.$$

 α can have negative or positive entries.

W.l.o.g., we consider the signomial set as the hypograph set

$$\mathcal{S}_{\mathrm{s}} = \{(x, y) \in \mathbb{R}^n_+ \times \mathbb{R}_+ : y \leq x^{\alpha}\}.$$

 α can have negative or positive entries. Decompose

$$\mathcal{S}_{\mathrm{s}} = \{(x, y) \in \mathbb{R}^n_+ \times \mathbb{R}_+ : y \leq x_-^{\alpha^-} x_+^{\alpha^+}\}.$$

Rearrange negative/positive power terms

$$\mathcal{S}_{\mathrm{s}} = \{(x, y) \in \mathbb{R}^n_+ \times \mathbb{R}_+ : yx_-^{-\alpha^-} \leq x_+^{\alpha^+}\}.$$

Rearrange negative/positive power terms

$$\mathcal{S}_{\mathrm{s}} = \{(x, y) \in \mathbb{R}^n_+ \times \mathbb{R}_+ : yx_-^{-\alpha^-} \leq x_+^{\alpha^+}\}.$$

Change of variables

$$\mathcal{S}_{\mathrm{s}} = \{(u, v) \in \mathbb{R}^h_+ imes \mathbb{R}^l_+ : u^eta \leq v^\gamma\},$$

 $\beta > \mathbf{0}, \gamma > \mathbf{0}.$

Scale β, γ such that max $(\|\beta\|_1, \|\gamma\|_1) \leq 1$,

$$\mathcal{S}_{\mathrm{s}} = \{(u, v) \in \mathbb{R}^{h}_{+} imes \mathbb{R}^{l}_{+} : u^{\beta} \leq v^{\gamma}\}$$

Denote by $\psi^{lpha}(x)=x^{lpha}$,

$$\mathcal{S}_{\mathrm{s}} = \{(u, v) \in \mathbb{R}^{h}_{+} imes \mathbb{R}^{l}_{+} : \psi^{\beta}(u) - \psi^{\gamma}(v) \leq 0\}$$

$$\mathcal{S}_{\mathrm{s}} = \{(u, v) \in \mathbb{R}^{h}_{+} imes \mathbb{R}^{l}_{+} : \psi^{\beta}(u) - \psi^{\gamma}(v) \leq 0\}$$

- ψ^β, ψ^γ are concave, ψ^β(u) − ψ^γ(v) is a difference-of-concave (DCC) function;
- If max(||β||₁, ||γ||₁) = 1, at least one of them is positively-homogeneous of degree-1;
- Assume both u, v are in box constraints, then ψ^β, ψ^γ are supermodular.

Definition

Given $S \in \mathbb{R}^p$, a closed set C is called S-free, if the following conditions are satisfied:

- 1. C is convex;
- 2. $inter(\mathcal{C}) \cap \mathcal{S} = \emptyset$.

Intersection cut is a framework.

- Given a non-convex set S, an S-free set, and a corner polyhedron P containing S.
- Separation (Zambelli et al., Integer Programming): intersect the corner polyhedron with the set C.

Intersection cut is a framework.

- Given a non-convex set S, an S-free set, and a corner polyhedron P containing S.
- Separation (Zambelli et al., Integer Programming): intersect the corner polyhedron with the set C.
- Nonlinear programming (Tuy 1964), S is the epigraph of a concave function;
- Recent development in MINLPs: outer product sets, bilinear sets, and quadratic sets.

The Geometry of intersection cuts

Theorem (Khamisov 1999, Serrano 2019)

Assume $S := \{z \in \mathbb{R}^p : f_1(z) - f_2(z) \le 0\}$, where f_1, f_2 are concave functions. Then, for $\check{z} \in \text{dom}(f_2)$, $C_{\hat{z}} := \{z \in \mathbb{R}^p : f_1(z) - f_2(\hat{z}) - \nabla f_2(\hat{z})^\top (z - \hat{z}) \ge 0\}$ is a S-free set.

Theorem (Serrano 2021)

Assume $S := \{z \in \mathbb{R}^p : f_1(z) - f_2(z) \le 0\}$, where f_1, f_2 are concave functions and positive-homogeneous of degree-1. Then, for $\breve{z} \in \operatorname{dom}(f_2)$, $C_{\hat{z}} := \{z \in \mathbb{R}^p : f_1(z) - f_2(\hat{z}) - \nabla f_2(\hat{z})^\top (z - \hat{z}) \ge 0\}$ is a maximal S-free set.

Corollary

 $\{(u, v) \in \mathbb{R}^{h}_{+} \times \mathbb{R}^{l}_{+} : \psi^{\beta}(u) - \psi^{\gamma}(\tilde{v}) - \nabla(\psi^{\gamma}(\tilde{v})) \cdot (v - \tilde{v}) \ge 0\}$ is a signomial-free set.

Assume $\max(\|\beta\|_1, \|\gamma\|_1) = 1$ (one function is positive-homogeneous of degree-1), we prove a stronger result

Theorem

 $\{(u, v) \in \mathbb{R}^{h}_{+} \times \mathbb{R}^{l}_{+} : \psi^{\beta}(u) - \psi^{\gamma}(\tilde{v}) - \nabla \psi^{\gamma}(\tilde{v}) \cdot (v - \tilde{v}) \ge 0\}$ is a maximal signomial-free set.

$$\mathcal{S}_{
m s} = \{(u,v) \in \mathbb{R}^h_+ imes \mathbb{R}^l_+ : \psi^eta(u) \le \psi^\gamma(v)\},$$

Recall that $\psi^eta(u), \psi^\gamma(v)$ are concave.

$$\mathcal{S}_{\rm s} = \{(u, v) \in \mathbb{R}^h_+ \times \mathbb{R}^I_+ : \psi^{\beta}(u) \leq \psi^{\gamma}(v)\},$$

Recall that $\psi^{\beta}(u), \psi^{\gamma}(v)$ are concave.
We assume $u \in \mathcal{U} := [\underline{u}, \overline{u}]$ is a box constraint. Consider now

$$\mathcal{S}_{\mathrm{s}} = \{(u, v) \in \mathcal{U} \times \mathbb{R}^{l}_{+} : \psi^{\beta}(u) - \psi^{\gamma}(v) \leq 0\}.$$

Constructing convex under-estimators of $\psi^{\beta}(u)$?

- Using supermodularity: supermodular relaxation.
- Factorization and relaxation: factorization relaxation.

Definition

Given $D = \prod_{1 \le i \le n} D_i$ $(D_i \subset \mathbb{R})$, a function $f : D \to \mathbb{R}$ is supermodular on D, if for every $x, y \in D$, $f(x) + f(y) \le f (\max\{x, y\}) + f (\min\{x, y\})$.

Lemma

 ψ^{β} is supermodular on \mathcal{U} .

Definition Define

$$g: [0,1]^h o \mathbb{R}: w o g(w) := \prod_{1 \le j \le h} ((\overline{u_j} - \underline{u_j})w_j + \underline{u_j})^{eta_j} - \underline{u}^eta,$$

$$\pi: [0,1]^h \to \mathcal{U}: w \to \pi(w) := ((\overline{u_1} - \underline{u_1})w_1 + \underline{u_1}, \cdots, (\overline{u_h} - \underline{u_h})w_h + \underline{u_h}),$$

and

$$\pi^{-1}: \mathcal{U} \to [0,1]^h: u \to \pi^{-1}(u) := (\frac{u_1 - u_1}{\overline{u_1} - \underline{u_1}}, \cdots, \frac{u_h - \underline{u_h}}{\overline{u_h} - \underline{u_h}}).$$

Theorem

The transformed function g is concave and supermodular on $[0, 1]^h$, and convex-extendable from vertices.

Supermodular relaxation: affine underestimating functions for \boldsymbol{g}

Theorem

Let $H := \{1, \dots, h\}$, let $\chi : 2^H \to \{0, 1\}^H$ be the indicator function over subsets of H, and define $\rho(j, S) := g(\chi_{S \cup \{j\}}) - g(\chi_S) \ (j \in H, S \subseteq H)$ the increment function of g. Then,

$$g(\chi_{S}) + \sum_{j \in H \smallsetminus S} \rho(j, S) w_{j} - \sum_{j \in S} \rho(j, N \smallsetminus \{j\}) (1 - w_{j}) \leq g(w),$$

$$g(\chi_{S}) + \sum_{j \in H \smallsetminus S} \rho(j, \emptyset) w_{j} - \sum_{j \in S} \rho(j, S \smallsetminus \{j\}) (1 - w_{j}) \leq g(w), \quad S \subseteq H,$$

(2)

Not an envelope. Separation can be done by a heuristic (Nemhauser 79).

The proposition leads to the Supermodular Relaxation:

$$\mathcal{S}_{\sup} = \left\{ (u, v) \in \mathcal{U} \times \mathbb{R}^{I} : \left(\pi^{-1}(u), \psi^{\gamma}(v) - \psi^{\beta}(\underline{u}) \right) \text{ satisfies (2)} \right\}.$$

$$\mathcal{S}_{\mathrm{s}} = \{(u, v) \in \mathcal{U} \times \mathbb{R}^{l}_{+} : \psi^{\beta}(u) - \psi^{\gamma}(v) \leq 0\}.$$

Theorem

Given the power function $\psi^{\beta}(u)$, let $\bar{\beta} \in \mathbb{R}^{h+1}_+$ satisfy that $\bar{\beta}_{[h]} = \beta_{[h]}$ and $\bar{\beta}_0 = 1 - \sum_{j \in [h]} \beta_j$, let $\zeta \in \mathbb{R}^h_+$ satisfy that $\zeta_j = \bar{\beta}_j / (\sum_{i \in [0:j]} \bar{\beta}_i)$. Denote

$$\mathcal{E}_{eta} := \{(u,t) \in \mathbb{R}^h_+ imes \mathbb{R} : \exists s \in \mathbb{R}^{h+1}_+ s_{h+1} = t \ s_1 = 1 \ orall j \in [0:h] \ u_j^{\zeta_j} s_j^{1-\zeta_j} \leq s_{j+1} \}.$$

Then, $\operatorname{epi}_{\mathbb{R}^h_+}(\psi^\beta) = \mathcal{E}_\beta$.

$$\mathcal{E}_eta := \{(u,t) \in \mathbb{R}^h_+ imes \mathbb{R} : \exists s \in \mathbb{R}^{h+1}_+ s_{h+1} = t \ s_1 = 1 \ orall j \in [0:h] \ u_j^{\zeta_j} s_j^{1-\zeta_j} \leq s_{j+1} \}.$$

Compute bounds on *s*, replace the concave term $u_j^{\zeta_j} s_j^{1-\zeta_j}$ by its convex envelope f^j (a piece-wise function) over the box constraint.

$$\mathcal{E}_eta := \{(u,t) \in \mathbb{R}^h_+ imes \mathbb{R} : \exists s \in \mathbb{R}^{h+1}_+ s_{h+1} = t \ s_1 = 1 \ orall j \in [0:h] \ f^j(u_j,s_j) \leq s_{j+1}\}.$$

Get rid of multilinear terms.

A convex relaxation in an extended formulation

$$\mathcal{S}_{\mathrm{lc}} := \{(u, v) \in \mathcal{U} imes \mathbb{R}^I : \exists s \in S \ \psi^{\gamma}(v) \ge s_{h+1} s_1 = 1 \ orall j \in [0:h] \ f^j(u_j, s_j) \le s_{j+1} \}.$$

Define recursively $F^{j}(u) := f^{j}(u_{j}, f^{j-1}(u_{j-1}, \cdots))$ $(j \in [0 : h])$. F^{h} is a polyhedral convex function.

$$\mathcal{S}_{\mathrm{lc}} = \{(u, v) \in \mathcal{U} \times \mathbb{R}^{I} : \psi^{\gamma}(v) \geq F^{h}(u)\}.$$

The gradient of F^h can be computed in a linear time.

- Software: **SCIP** 8.0.0, CPLEX 22.1, and Ipopt 3.14.7.
- Hardware: Intel Xeon W-2245 CPU @ 3.90GHz, 126GB main memory.
- Data: From MINLPLib, C (68 continuous instances), MI (189 mixed-integer instances), and AII.

- Default: SCIP's default;
- ICUT: only intersection cuts;
- SOCUT: only outer approximation cuts from supermodular relaxation;
- POCUT: only outer approximation cuts from facotrization relaxations;

Closed root gap function: 0-100%, the larger, the better.

Benchmark	Default		ICUT			SOCUT			POCUT		
	solved	closed	solved	closed	relative	solved	closed	relative	solved	closed	relative
C-clean	11/68	0.38	13/68	0.47	1.24	11/68	0.4	1.06	13/67	0.41	1.09
C-affected	4/47	0.4	6/47	0.53	1.34	4/47	0.43	1.08	6/46	0.45	1.13
MI-clean	12/189	0.32	12/189	0.35	1.1	16/187	0.33	1.01	11/183	0.33	1.04
MI-affected	7/120	0.44	7/120	0.49	1.12	11/118	0.45	1.02	6/114	0.46	1.06
All-clean	23/257	0.34	25/257	0.38	1.14	27/255	0.35	1.03	24/250	0.35	1.05
All-affected	11/167	0.43	13/167	0.5	1.18	15/165	0.44	1.04	12/160	0.46	1.08

Table: Summary of the closed root gaps and relative improvement to the Default setting

- Intersection cuts are strongest;
- Supermodular outer approximation is weak;
- Facotrization outer approximation is a good alternative to the conventional factorization.

- Implementing a signomial term handler in a solver may be useful, to detect signomials, reformulate (eliminate intermediate variables), cut (initial LP estimation + separation);
- (Unexploited): both sides of the DCC formulation are monotone, useful for propagation and presolving?