(Three) Cutting Planes for Signomial Programming

Liding Xu
Claudia D'Ambrosio, Sonia Haddad Vanier, Leo Liberti

OptimiX, LIX, École Polytechnique

April, 2022

Table of Contents

Introduction to Signomial Programming

Normalized form of signomial set

Signomial-free sets and intersection cuts

Convex relaxation and outer approximation cuts

Experiments and results

Conclusions

Problem definition: signomial terms

- Exponent vector: $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}$.
- Signomial term: $x^{\alpha}:=\prod_{i=1}^{n} x_{i}^{\alpha_{i}}$, for $x \in \mathbb{R}_{++}^{n}$.
- Examples: $x_{1}^{-1} x_{2}^{1}, \quad x_{1}^{0.5} x_{2}^{-10} x_{3}^{1.2}$.
- When $\alpha \in \mathbb{Z}_{+}^{n}$, monomial term.
- Nonconvex.

Problem definition: Signomial Programming (SP)

$$
\begin{array}{rc}
\min & c \cdot x \\
\forall j \in[1: m] & \sum_{k \in \mathcal{K}_{j}} a_{j k} x^{\alpha^{k}} \leq 0 \\
\forall i \in[1: n] & x_{i} \in\left[\underline{x}_{i}, \bar{x}_{i}\right] \subset \mathbb{R}_{++}
\end{array}
$$

Solution methods of global solvers

An example.

- For example, $x_{1}^{1.9} x_{2}^{-0.1} x_{3}^{4}$.
- Introduce a lifting variable, $y=x_{1}^{1.9} x_{2}^{-0.1} x_{3}^{4}$;
- Introduce auxiliary variables $y_{1}=x_{1}^{1.9}, y_{2}=x_{2}^{-0.1}, y_{3}=x_{3}^{4}$;

Solution methods of global solvers

An example.

- For example, $x_{1}^{1.9} x_{2}^{-0.1} x_{3}^{4}$.
- Introduce a lifting variable, $y=x_{1}^{1.9} x_{2}^{-0.1} x_{3}^{4}$;
- Introduce auxiliary variables $y_{1}=x_{1}^{1.9}, y_{2}=x_{2}^{-0.1}, y_{3}=x_{3}^{4}$;
- Construct convex relaxations for $y_{1}=x_{1}^{1.9}, y_{2}=x_{2}^{-0.1}$, $y_{3}=x_{3}^{4}$;
- Relax multilinear constraint $y=y_{1} y_{2} y_{3}$.

Normalized formulation of signomial sets

W.I.o.g., we consider the signomial set as the hypograph set

$$
\mathcal{S}_{\mathrm{s}}=\left\{(x, y) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}: y \leq x^{\alpha}\right\}
$$

α can have negative or positive entries.

Normalized formulation of signomial sets

W.I.o.g., we consider the signomial set as the hypograph set

$$
\mathcal{S}_{\mathrm{s}}=\left\{(x, y) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}: y \leq x^{\alpha}\right\}
$$

α can have negative or positive entries. Decompose

$$
\mathcal{S}_{\mathrm{s}}=\left\{(x, y) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}: y \leq x_{-}^{\alpha^{-}} x_{+}^{\alpha^{+}}\right\}
$$

Normalized formulation of signomial sets (continued)

Rearrange negative/positive power terms

$$
\mathcal{S}_{\mathrm{s}}=\left\{(x, y) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}: y x_{-}^{-\alpha^{-}} \leq x_{+}^{\alpha^{+}}\right\}
$$

Normalized formulation of signomial sets (continued)

Rearrange negative/positive power terms

$$
\mathcal{S}_{\mathrm{s}}=\left\{(x, y) \in \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}: y x_{-}^{-\alpha^{-}} \leq x_{+}^{\alpha^{+}}\right\}
$$

Change of variables

$$
\mathcal{S}_{\mathrm{s}}=\left\{(u, v) \in \mathbb{R}_{+}^{h} \times \mathbb{R}_{+}^{\prime}: u^{\beta} \leq v^{\gamma}\right\}
$$

$\beta>0, \gamma>0$.

Normalized formulation of signomial set

Scale β, γ such that $\max \left(\|\beta\|_{1},\|\gamma\|_{1}\right) \leq 1$,

$$
\mathcal{S}_{\mathrm{s}}=\left\{(u, v) \in \mathbb{R}_{+}^{h} \times \mathbb{R}_{+}^{\prime}: u^{\beta} \leq v^{\gamma}\right\}
$$

Denote by $\psi^{\alpha}(x)=x^{\alpha}$,

$$
\mathcal{S}_{\mathrm{s}}=\left\{(u, v) \in \mathbb{R}_{+}^{h} \times \mathbb{R}_{+}^{\prime}: \psi^{\beta}(u)-\psi^{\gamma}(v) \leq 0\right\}
$$

A lift of nice properties

$$
\mathcal{S}_{\mathrm{s}}=\left\{(u, v) \in \mathbb{R}_{+}^{h} \times \mathbb{R}_{+}^{\prime}: \psi^{\beta}(u)-\psi^{\gamma}(v) \leq 0\right\}
$$

- $\psi^{\beta}, \psi^{\gamma}$ are concave, $\psi^{\beta}(u)-\psi^{\gamma}(v)$ is a difference-of-concave (DCC) function;
- If $\max \left(\|\beta\|_{1},\|\gamma\|_{1}\right)=1$, at least one of them is positively-homogeneous of degree-1;
- Assume both u, v are in box constraints, then $\psi^{\beta}, \psi^{\gamma}$ are supermodular.

Intersection cuts: a standard procedure

Definition

Given $\mathcal{S} \in \mathbb{R}^{p}$, a closed set \mathcal{C} is called \mathcal{S}-free, if the following conditions are satisfied:

1. \mathcal{C} is convex;
2. inter $(\mathcal{C}) \cap \mathcal{S}=\emptyset$.

Intersection cut

Intersection cut is a framework.

- Given a non-convex set \mathcal{S}, an \mathcal{S}-free set, and a corner polyhedron \mathcal{P} containing \mathcal{S}.
- Separation (Zambelli et al., Integer Programming): intersect the corner polyhedron with the set \mathcal{C}.

Intersection cut

Intersection cut is a framework.

- Given a non-convex set \mathcal{S}, an \mathcal{S}-free set, and a corner polyhedron \mathcal{P} containing \mathcal{S}.
- Separation (Zambelli et al., Integer Programming): intersect the corner polyhedron with the set \mathcal{C}.
- Nonlinear programming (Tuy 1964), \mathcal{S} is the epigraph of a concave function;
- Recent development in MINLPs: outer product sets, bilinear sets, and quadratic sets.

The Geometry of intersection cuts

S-free sets of level sets in NLP

Theorem (Khamisov 1999,Serrano 2019)
Assume $\mathcal{S}:=\left\{z \in \mathbb{R}^{p}: f_{1}(z)-f_{2}(z) \leq 0\right\}$, where f_{1}, f_{2} are concave functions. Then, for $\check{z} \in \operatorname{dom}\left(f_{2}\right)$,
$\mathcal{C}_{\hat{z}}:=\left\{z \in \mathbb{R}^{p}: f_{1}(z)-f_{2}(\hat{z})-\nabla f_{2}(\hat{z})^{\top}(z-\hat{z}) \geq 0\right\}$ is a \mathcal{S}-free set.

Theorem (Serrano 2021)
Assume $\mathcal{S}:=\left\{z \in \mathbb{R}^{p}: f_{1}(z)-f_{2}(z) \leq 0\right\}$, where f_{1}, f_{2} are concave functions and positive-homogeneous of degree-1. Then, for $\breve{z} \in \operatorname{dom}\left(f_{2}\right), \mathcal{C}_{\hat{z}}:=\left\{z \in \mathbb{R}^{p}: f_{1}(z)-f_{2}(\hat{z})-\nabla f_{2}(\hat{z})^{\top}(z-\hat{z}) \geq 0\right\}$ is a maximal \mathcal{S}-free set.

Signomial-free sets

Corollary
$\left\{(u, v) \in \mathbb{R}_{+}^{h} \times \mathbb{R}_{+}^{\prime}: \psi^{\beta}(u)-\psi^{\gamma}(\tilde{v})-\nabla\left(\psi^{\gamma}(\tilde{v})\right) \cdot(v-\tilde{v}) \geq 0\right\}$ is
a signomial-free set.
Assume $\max \left(\|\beta\|_{1},\|\gamma\|_{1}\right)=1$ (one function is
positive-homogeneous of degree-1), we prove a stronger result
Theorem
$\left\{(u, v) \in \mathbb{R}_{+}^{h} \times \mathbb{R}_{+}^{\prime}: \psi^{\beta}(u)-\psi^{\gamma}(\tilde{v})-\nabla \psi^{\gamma}(\tilde{v}) \cdot(v-\tilde{v}) \geq 0\right\}$ is a maximal signomial-free set.

Signomial set on box constraint

$$
\mathcal{S}_{\mathrm{s}}=\left\{(u, v) \in \mathbb{R}_{+}^{h} \times \mathbb{R}_{+}^{\prime}: \psi^{\beta}(u) \leq \psi^{\gamma}(v)\right\}
$$

Recall that $\psi^{\beta}(u), \psi^{\gamma}(v)$ are concave.

Signomial set on box constraint

$$
\mathcal{S}_{\mathrm{s}}=\left\{(u, v) \in \mathbb{R}_{+}^{h} \times \mathbb{R}_{+}^{\prime}: \psi^{\beta}(u) \leq \psi^{\gamma}(v)\right\}
$$

Recall that $\psi^{\beta}(u), \psi^{\gamma}(v)$ are concave.
We assume $u \in \mathcal{U}:=[\underline{u}, \bar{u}]$ is a box constraint. Consider now

$$
\mathcal{S}_{\mathrm{s}}=\left\{(u, v) \in \mathcal{U} \times \mathbb{R}_{+}^{\prime}: \psi^{\beta}(u)-\psi^{\gamma}(v) \leq 0\right\}
$$

Convex under-estimators

Constructing convex under-estimators of $\psi^{\beta}(u)$?

- Using supermodularity: supermodular relaxation.
- Factorization and relaxation: factorization relaxation.

Supermodular relaxation: supermodular functions

Definition

Given $D=\prod_{1 \leq i \leq n} D_{i}\left(D_{i} \subset \mathbb{R}\right)$, a function $f: D \rightarrow \mathbb{R}$ is supermodular on D, if for every $x, y \in D$,
$f(x)+f(y) \leq f(\max \{x, y\})+f(\min \{x, y\})$.
Lemma
ψ^{β} is supermodular on \mathcal{U}.

Supermodular relaxation: transformation

Definition
Define

$$
\begin{aligned}
& \qquad g:[0,1]^{h} \rightarrow \mathbb{R}: w \rightarrow g(w):=\prod_{1 \leq j \leq h}\left(\left(\overline{u_{j}}-\underline{u_{j}}\right) w_{j}+\underline{u_{j}}\right)^{\beta_{j}}-\underline{u}^{\beta}, \\
& \pi:[0,1]^{h} \rightarrow \mathcal{U}: w \rightarrow \pi(w):=\left(\left(\overline{u_{1}}-\underline{u_{1}}\right) w_{1}+\underline{u_{1}}, \cdots,\left(\overline{u_{h}}-\underline{u_{h}}\right) w_{h}+\underline{u_{h}}\right), \\
& \text { and }
\end{aligned}
$$

$$
\pi^{-1}: \mathcal{U} \rightarrow[0,1]^{h}: u \rightarrow \pi^{-1}(u):=\left(\frac{u_{1}-\underline{u_{1}}}{\overline{u_{1}}-\underline{u_{1}}}, \cdots, \frac{u_{h}-\underline{u_{h}}}{\overline{u_{h}}-\underline{u_{h}}}\right) .
$$

Supermodular relaxation: after transformation

Theorem
The transformed function g is concave and supermodular on $[0,1]^{h}$, and convex-extendable from vertices.

Supermodular relaxation: affine underestimating functions

 for gTheorem
Let $H:=\{1, \cdots, h\}$, let $\chi: 2^{H} \rightarrow\{0,1\}^{H}$ be the indicator function over subsets of H, and define $\rho(j, S):=g\left(\chi_{S \cup\{j\}}\right)-g\left(\chi_{S}\right)(j \in H, S \subseteq H)$ the increment function of g. Then,

$$
\begin{align*}
& g\left(\chi_{S}\right)+\sum_{j \in H \backslash S} \rho(j, S) w_{j}-\sum_{j \in S} \rho(j, N \backslash\{j\})\left(1-w_{j}\right) \leq g(w), \\
& g\left(\chi_{S}\right)+\sum_{j \in H \backslash S} \rho(j, \varnothing) w_{j}-\sum_{j \in S} \rho(j, S \backslash\{j\})\left(1-w_{j}\right) \leq g(w), \quad S \subseteq H \tag{2}
\end{align*}
$$

Not an envelope. Separation can be done by a heuristic (Nemhauser 79).

Supermodular relaxation: the formulation

The proposition leads to the Supermodular Relaxation:

$$
\mathcal{S}_{\text {sup }}=\left\{(u, v) \in \mathcal{U} \times \mathbb{R}^{\prime}:\left(\pi^{-1}(u), \psi^{\gamma}(v)-\psi^{\beta}(\underline{u})\right) \text { satisfies }(2)\right\}
$$

Factorization relaxation

$$
\mathcal{S}_{\mathrm{s}}=\left\{(u, v) \in \mathcal{U} \times \mathbb{R}_{+}^{\prime}: \psi^{\beta}(u)-\psi^{\gamma}(v) \leq 0\right\} .
$$

Factorization relaxation: factorization (lifting)

Theorem
Given the power function $\psi^{\beta}(u)$, let $\bar{\beta} \in \mathbb{R}_{+}^{h+1}$ satisfy that $\bar{\beta}_{[h]}=\beta_{[h]}$ and $\bar{\beta}_{0}=1-\sum_{j \in[h]} \beta_{j}$, let $\zeta \in \mathbb{R}_{+}^{h}$ satisfy that $\zeta_{j}=\bar{\beta}_{j} /\left(\sum_{i \in[0: j]} \bar{\beta}_{i}\right)$. Denote

$$
\begin{aligned}
& \mathcal{E}_{\beta}:=\left\{(u, t) \in \mathbb{R}_{+}^{h} \times \mathbb{R}: \exists s \in \mathbb{R}_{+}^{h+1} s_{h+1}=t s_{1}=1\right. \\
&\left.\forall j \in[0: h] u_{j}^{\zeta_{j}} s_{j}^{1-\zeta_{j}} \leq s_{j+1}\right\} .
\end{aligned}
$$

Then, $\mathrm{epi}_{\mathbb{R}_{+}^{h}}\left(\psi^{\beta}\right)=\mathcal{E}_{\beta}$.

Factorization relaxation: convexification

$$
\begin{aligned}
& \mathcal{E}_{\beta}:=\left\{(u, t) \in \mathbb{R}_{+}^{h} \times \mathbb{R}: \exists s \in \mathbb{R}_{+}^{h+1} s_{h+1}=t s_{1}=1\right. \\
&\left.\forall j \in[0: h] u_{j}^{\zeta_{j}} s_{j}^{1-\zeta_{j}} \leq s_{j+1}\right\} .
\end{aligned}
$$

Compute bounds on s, replace the concave term $u_{j}^{\zeta_{j}} s_{j}^{1-\zeta_{j}}$ by its convex envelope f^{j} (a piece-wise function) over the box constraint.

$$
\begin{aligned}
\mathcal{E}_{\beta}:=\left\{(u, t) \in \mathbb{R}_{+}^{h} \times \mathbb{R}: \exists s \in \mathbb{R}_{+}^{h+1}\right. & s_{h+1}=t s_{1}=1 \\
& \left.\forall j \in[0: h] f^{j}\left(u_{j}, s_{j}\right) \leq s_{j+1}\right\} .
\end{aligned}
$$

Factorization relaxation: the extended formulation

Get rid of multilinear terms.
A convex relaxation in an extended formulation

$$
\begin{aligned}
\mathcal{S}_{\text {lc }}:=\left\{(u, v) \in \mathcal{U} \times \mathbb{R}^{\prime}: \exists s \in S\right. & \psi^{\gamma}(v) \geq s_{h+1} s_{1}=1 \\
& \left.\forall j \in[0: h] f^{j}\left(u_{j}, s_{j}\right) \leq s_{j+1}\right\} .
\end{aligned}
$$

Factorization relaxation: projection

Define recursively $F^{j}(u):=f^{j}\left(u_{j}, f^{j-1}\left(u_{j-1}, \cdots\right)\right)(j \in[0: h]) . F^{h}$ is a polyhedral convex function.

$$
\mathcal{S}_{\mathrm{lc}}=\left\{(u, v) \in \mathcal{U} \times \mathbb{R}^{\prime}: \psi^{\gamma}(v) \geq F^{h}(u)\right\}
$$

The gradient of F^{h} can be computed in a linear time.

Development environment

- Software: SCIP 8.0.0, CPLEX 22.1, and Ipopt 3.14.7.
- Hardware: Intel Xeon W-2245 CPU @ $3.90 \mathrm{GHz}, 126 \mathrm{~GB}$ main memory.
- Data: From MINLPLib, C (68 continuous instances), MI (189 mixed-integer instances), and All.

Numerical results

- Default: SCIP's default;
- ICUT: only intersection cuts;
- SOCUT: only outer approximation cuts from supermodular relaxation;
- POCUT: only outer approximation cuts from facotrization relaxations;

Closed root gap function: 0-100\%, the larger, the better.

Numerical results

Benchmark	Defalt			ICUT					SOCUT		
solved	closed	solved	closed	relative	solved	closed	relative	solved	closed	relative	
C-clean	$11 / 68$	0.38	$13 / 68$	0.47	1.24	$11 / 68$	0.4	1.06	$13 / 67$	0.41	1.09
C-affected	$4 / 47$	0.4	$6 / 47$	0.53	1.34	$4 / 47$	0.43	1.08	$6 / 46$	0.45	1.13
MI-clean	$12 / 189$	0.32	$12 / 189$	0.35	1.1	$16 / 187$	0.33	1.01	$11 / 183$	0.33	1.04
MI-affected	$7 / 120$	0.44	$7 / 120$	0.49	1.12	$11 / 118$	0.45	1.02	$6 / 114$	0.46	1.06
All-clean	$23 / 257$	0.34	$25 / 257$	0.38	1.14	$27 / 255$	0.35	1.03	$24 / 250$	0.35	1.05
All-affected	$11 / 167$	0.43	$13 / 167$	0.5	1.18	$15 / 165$	0.44	1.04	$12 / 160$	0.46	1.08

Table: Summary of the closed root gaps and relative improvement to the Default setting

- Intersection cuts are strongest;
- Supermodular outer approximation is weak;
- Facotrization outer approximation is a good alternative to the conventional factorization.

Future development

- Implementing a signomial term handler in a solver may be useful, to detect signomials, reformulate (eliminate intermediate variables), cut (initial LP estimation + separation);
- (Unexploited): both sides of the DCC formulation are monotone, useful for propagation and presolving?

