An algorithmic toolkit for continuous set covering on networks

Liding Xu, Mercedes Pelegrín

OptimiX, LIX, École Polytechnique

July 7, 2022

Table of Contents

Introduction

Problem description Existing approaches

Models

Our constribution

Experiments

Conclusion

Set covering problem

A classical NP-complete problem: Given a universal U and a family S of subsets of U, the problem asks the minimal number of subsets covering U.

$$\min_{s \in S} x_s \tag{1}$$

$$\sum_{e \in S} x_s \ge 1, \quad e \in U \tag{2}$$

$$x_s \in \{0, 1\}, e \in S.$$
 (3)

Set covering problems on networks

(a) two facilities points

- ► Consider a network N = (V, A),
- Assume every edge is continuous, and its continuum is the union of points.
- ▶ The continuum of N is C(N).

Set covering problems on networks

- (a) two facilities points p and p'
- Let $d(p_1, p_2)$ measure the shortest path distance between two points p_1 and p_2 in C(N).
- ▶ Each point $p \in C(N)$ can cover the points in C(N) with distance at most δ .

Extensions of set covering problems on networks

Here we use S to denote the set of facility locations, and U to denote the set of demands.

- ▶ Discrete: when U = V and S = V, reduced to the classical set covering problem (ILP or approximation algorithm).
- ▶ Semi-continuous: when either U = C(N) or S = C(N), the problem is reducable to the classical set covering problem (tractable).
- ▶ Continuous: When both U = C(N) and S = C(N), the continuous set covering on networks.

Continuous set covering on networks

Some applications:

- locations of ambulance bases.
- surveillance cameras.
- routing servers in a network of computers.
- cranes for construction.
- aerial military medical evacuation facilities.
- aircraft alert sites for homeland defense.
- eVTOL safety landing sites.

Existing exact approach: discretization

- discretization methods: preprocssing procedures to reduce the problem to a tractable set covering problem.
- finite dominating sets (FDS): finite subsets of candidate locations guaranteed to contain an optimal solution.

Existing exact approach: discretization

An example: all edges have unit length and $\delta = 2$.

Figure: Two cycle coverage points with respect to a cycle C of five nodes

FDS: nodes and mid-points of edges.

Existing exact approach: discretization

- reduced problem: semi-continuous, then further reduced to a discrete version.
- ► However, discretization methods rely on assumptions, e.g., edge lengths are natural numbers.

Covering conditions, an example:

(c) By one point, trough one end

- ► The only existing MILP formulation is by Fröhlich et al., "Covering edges in network".
- ▶ Basic assumption: edge length is at most δ .
- ▶ MIP solvers cannot solve this MILP for moderate networks.

Basi ideas.

- each edge can host a facility.
- ▶ an edge is covered, if the sum of available "cover range" from the left-end and the right-end is greater than the edge length.
- modeling the cover range between each pair of edges.

Some comments:

- Each pair of edges are modeled, as in a complete graph. Networks are usually sparse!
- Some edges or nodes cannot contribute to cover, if the distance is large.
- Symmetry: if a facility is at a node, which incident edge host this node?

New model of the covering condition

- two kinds of facilities: facilities at nodes and facilities in edges.
- ightharpoonup a point is covered by a covering path from a facility, the path length is at most δ .

Our contribution

- Various preprocessing techniques: delimitation and modelling long edges.
- ► Two main new MILP models and some strengthening technique.
- ▶ an open-source implementation.

Modeling the covering condition

- the residual cover: given a node, the truncated length of covering paths.
- ➤ an edge is covered if the sum of residual cover from the left end and the right end is greater than the edge length.

MILP Model 1

 $y_f, w_e \in \{0, 1\}$

 $q_{e'}, r_v \ge 0$

 $x_v, z_{vv'}, z_{ve'i'} \in \{0, 1\}$

$$\begin{aligned} \min \sum_{f \in \mathcal{F}} y_f & (6a) \\ \text{s.t. } w_e \geq y_f & e \in E, f \in \mathcal{F}_c(e) & (6b) \\ w_e \leq \sum_{f \in \mathcal{F}_c(e)} y_f & e \in E & (6c) \\ x_v \geq 1 - \sum_{e \in E(v)} (1 - w_e) & v \in V & (6d) \\ x_v \leq w_e & v \in V, e \in E(v) & (6e) \\ y_{v'_{i'}} + y_{e'} \leq 1 & e' \in E, i' \in \{a, b\} & (6f) \\ q_{e'} \leq l_{e'} y_{e'} & e' \in E & (6g) \\ l_e(1 - w_e) \leq r_{v_a} + r_{v_b} & e \in E & (6h) \\ x_v + \sum_{v' \in \mathcal{V}_p(v)} z_{v'} + \sum_{(e',i') \in \mathcal{E}\mathcal{I}_p(v)} z_{ve'i'} = 1 & v \in V & (6i) \\ z_{vv'} \leq y_{v'} & v \in V, v' \in \mathcal{V}_p(v) & (6j) \\ z_{ve'i'} \leq y_{e'} & v \in V, (e',i') \in \mathcal{E}\mathcal{I}_p(v) & (6k) \\ r_v \leq M_v(1 - x_v) & v \in V & (6l) \\ r_v \leq M_{vv'}(1 - z_{vv'}) + \delta - d(v,v') & v \in V, (e',i') \in \mathcal{E}\mathcal{I}_p(v) & (6m) \\ r_v \leq M_{ve'i'}(1 - z_{ve'i'}) + \delta - \tau_{ve'i'}(q_{e'}) & v \in V, (e',i') \in \mathcal{E}\mathcal{I}_p(v) & (6n) \end{aligned}$$

(6o)

(6p)

(6q)

 $f \in \mathcal{F}, e \in E$

 $e' \in E, v \in V$.

 $v \in V, v' \in \mathcal{V}_{p}(v), (e', i') \in \mathcal{EI}_{p}(v)$

Preprocessing: delimitation

the reduction of the candidate space:

- potential covers: a set of edges and nodes in which a facility can possibly cover a given node.
- complete covers: a set of edges and nodes in which a facility can always cover a given edge.
- partial covers: further refinement of the potential covers.

Preprocessing: long edge modeling

The previous modeling assumes short edges: $l_e \leq \delta$.

- First approach: subdivide long edges into small edges.
- Second approach: directly model the covering condition on long edge.

Preprocessing: long edge modeling

(b) A facility is located at the tail (c) No facility is located at the tail $(0 < q_e \le \hat{l}_e)$ ($\hat{l}_e < q_e \le 2\delta$)

Figure: Covering a long edge $e = (v_a, v_b)$

Key observation: once the location of the left-most facility is determined, other facility locations are determined.

MILP model 2

Modify MILP model 1 for covering on long edges. We add specific variables and constraints, and other parts remain the same.

Algorithmic tool: CFLG.jl

- Implementation is based on JuMP and written in Julia.
- ▶ Input: a network and a cover radius δ .
- Output: the number of facilities and locations.
- ► Algorithmic options:
 - EF: Covering edges in network.
 - ► F0: MILP model 1 without delimitation.
 - F: MILP model 1 with delimitation.
 - SF: MILP model 1 with delimitation and some valid inequalities.
 - RF: MILP model 2.
 - SFD: semi-continuous model, SF with facilities located at nodes.

Data

- Kgroup: It consists of 23 prize-collecting Steiner tree problem instances, designed to have a local structure somewhat similar to street maps.
- City: It consists of real data of 9 street networks for some German cities.
- ▶ Random: It consists of 24 random networks instances generated by the package "Networkx"

Performance metric

the relative dual gap is defined as:

$$\sigma := \frac{\overline{v} - \underline{v}}{\overline{v}},$$

where \overline{v} is an upper-bound and \underline{v} is a lower-bound.

the relative primal bound

$$v_r := \frac{\overline{v}}{n_{sd}},$$

- t: the total running time in CPU seconds.
- ► S/A/T: the number of solved instances/ the number of affected instances/ the number of total instances in the benchmark.

Experimental results I

Benchmark	Radius	EF				FO			
		time	$\sigma(\%)$	v _r (%)	S/A/T	time	$\sigma(\%)$	v _r (%)	S/A/T
city	Small	1800.0	100.0%	100.0%	0/0/9	1801.7	56.8%	83.3%	0/3/9
	Large	1800.0	100.0%	100.0%	0/0/9	1800.9	42.3%	36.2%	0/6/9
Kgroup_A	Small	1800.0	100.0%	100.0%	0/0/11	1802.6	25.1%	85.0%	0/11/11
	Large	1800.0	100.0%	100.0%	0/0/11	139.2	14.7%	19.2%	7/11/11
Kgroup_B	Small	1800.0	100.0%	100.0%	0/0/12	1800.4	92.6%	98.8%	0/1/12
	Large	1800.0	100.0%	100.0%	0/0/12	1800.1	93.2%	86.6%	0/1/12
random_A	Small	1800.0	100.0%	100.0%	0/0/12	16.8	15.9%	54.8%	9/12/12
	Large	1800.0	100.0%	100.0%	0/0/12	0.2	25.5%	19.5%	12/12/12
random_B	Small	1800.0	100.0%	100.0%	0/0/12	1317.6	36.4%	63.3%	1/12/12
	Large	1800.0	100.0%	100.0%	0/0/12	154.4	26.0%	10.0%	11/12/12
all	Small	1800.0	100.0%	100.0%	0/0/56	625.8	37.4%	74.8%	10/39/56
	Large	1800.0	100.0%	100.0%	0/0/56	132.5	33.1%	25.9%	30/42/56

Table: Results for continuous models

Experimental results II

Benchmark	Radius	F				SF			
		time	$\sigma(\%)$	v _r (%)	S/A/T	time	$\sigma(\%)$	v _r (%)	S/A/T
city	Small	1802.9	29.5%	62.2%	0/9/9	1801.3	30.1%	66.9%	0/9/9
	Large	1801.2	28.4%	21.7%	0/9/9	1800.9	29.1%	21.7%	0/9/9
Kgroup_A	Small	1803.0	33.1%	82.2%	0/11/11	1801.3	32.0%	80.6%	0/11/11
	Large	238.0	18.9%	19.1%	8/11/11	300.8	19.0%	19.1%	8/11/11
Kgroup_B	Small	1800.6	80.8%	240.5%	0/12/12	1801.4	79.7%	191.9%	0/12/12
	Large	1800.4	85.1%	80.5%	0/12/12	1800.7	85.9%	77.3%	0/12/12
random_A	Small	20.2	16.5%	54.3%	9/12/12	16.1	17.1%	54.9%	9/12/12
	Large	0.3	25.5%	19.5%	12/12/12	0.2	10.4%	17.9%	12/12/12
random_B	Small	1574.2	38.8%	64.9%	1/12/12	1501.2	40.0%	67.5%	1/12/12
	Large	220.5	19.9%	10.3%	9/12/12	175.7	18.8%	10.0%	11/12/12
all	Small	675.0	35.2%	86.2%	10/56/56	637.6	35.5%	83.6%	10/56/56
	Large	163.0	30.2%	23.6%	29/56/56	160.9	24.9%	22.8%	31/56/56

Table: Results for continuous models

Experimental results III

Benchmark	Radius	RF						
Delicilliark	ixauius	time	σ (%)	<i>v</i> _r (%)	S/A/T			
oi+v	Small	1804.4	16.2%	54.1%	0/9/9			
city	Large	1801.5	25.8%	21.3%	0/9/9			
Vernous	Small	1622.6	21.5%	77.5%	1/11/11			
Kgroup_A	Large	158.9	19.2%	19.3%	8/11/11			
Kgroup_B	Small	1800.9	59.1%	154.2%	0/12/12			
	Large	1800.6	75.5%	63.3%	0/12/12			
A	Small	15.9	8.1%	54.3%	9/12/12			
random_A	Large	0.3	26.6%	19.8%	12/12/12			
d D	Small	1304.3	38.5%	63.8%	1/12/12			
random_B	Large	190.2	19.8%	11.2%	9/12/12			
all	Small	604.9	23.7%	75.4%	11/56/56			
all	Large	146.6	29.2%	22.8%	29/56/56			

Table: Results for continuous models

More details

Code: https://github.com/lidingxu/cflg

Arxiv: Mercedes Pelegrín and Liding Xu, "Continuous Covering on

Networks: Strong Mixed Integer Programming Formulations"

Conclusion

- New preprocssing and MILP models for continuous set-covering on networks.
- ► An open source implementation.