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Set covering problem

A classical NP-complete problem: Given a universal U and a family
S of subsets of U, the problem asks the minimal number of subsets
covering U.

min
s∈S

xs (1)∑
e∈S

xs ≥ 1, e ∈ U (2)

xs ∈ {0, 1}, e ∈ S . (3)
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Set covering problems on networks

(a) two facilities points

▶ Consider a network N = (V ,A),

▶ Assume every edge is continuous, and its continuum is the
union of points.

▶ The continuum of N is C (N).
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Set covering problems on networks

(a) two facilities points p
and p′

▶ Let d(p1, p2) measure the shortest path distance between two
points p1 and p2 in C (N).

▶ Each point p ∈ C (N) can cover the points in C (N) with
distance at most δ.
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Extensions of set covering problems on networks

Here we use S to denote the set of facility locations, and U to
denote the set of demands.

▶ Discrete: when U = V and S = V , reduced to the classical
set covering problem (ILP or approximation algorithm).

▶ Semi-continuous: when either U = C (N) or S = C (N), the
problem is reducable to the classical set covering problem
(tractable).

▶ Continuous: When both U = C (N) and S = C (N), the
continuous set covering on networks.
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Continuous set covering on networks

Some applications:

▶ locations of ambulance bases.

▶ surveillance cameras.

▶ routing servers in a network of computers.

▶ cranes for construction.

▶ aerial military medical evacuation facilities.

▶ aircraft alert sites for homeland defense.

▶ eVTOL safety landing sites.
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Existing exact approach: discretization

▶ discretization methods: preprocssing procedures to reduce the
problem to a tractable set covering problem.

▶ finite dominating sets (FDS): finite subsets of candidate
locations guaranteed to contain an optimal solution.
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Existing exact approach: discretization

An example: all edges have unit length and δ = 2.

Figure: Two cycle coverage points with respect to a cycle C of five nodes

FDS: nodes and mid-points of edges.
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Existing exact approach: discretization

▶ reduced problem: semi-continuous, then further reduced to a
discrete version.

▶ However, discretization methods rely on assumptions, e.g.,
edge lengths are natural numbers.
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Existing exact approach: MILP

Covering conditions, an example:

(a) By two points
(b) By one point, through
both ends

(c) By one point, trough
one end

Figure: Covering of an edge e = (va, vb) ∈ E
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Existing exact approach: MILP

▶ The only existing MILP formulation is by Fröhlich et al.,
“Covering edges in network”.

▶ Basic assumption: edge length is at most δ.

▶ MIP solvers cannot solve this MILP for moderate networks.
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Existing exact approach: MILP

Basi ideas.

(a) By two points

▶ each edge can host a facility.

▶ an edge is covered, if the sum of available “cover range” from
the left-end and the right-end is greater than the edge length.

▶ modeling the cover range between each pair of edges.
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Existing exact approach: MILP

(a) By two points

Some comments:

▶ Each pair of edges are modeled, as in a complete graph.
Networks are usually sparse!

▶ Some edges or nodes cannot contribute to cover, if the
distance is large.

▶ Symmetry: if a facility is at a node, which incident edge host
this node?
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New model of the covering condition

(a) By two points

▶ two kinds of facilities: facilities at nodes and facilities in edges.

▶ a point is covered by a covering path from a facility, the path
length is at most δ.
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Our contribution

▶ Various preprocessing techniques: delimitation and modelling
long edges.

▶ Two main new MILP models and some strengthening
technique.

▶ an open-source implementation.
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Modeling the covering condition

(a) By two points

▶ the residual cover: given a node, the truncated length of
covering paths.

▶ an edge is covered if the sum of residual cover from the left
end and the right end is greater than the edge length.
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MILP Model 1
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Preprocessing: delimitation

the reduction of the candidate space:

▶ potential covers: a set of edges and nodes in which a
facility can possibly cover a given node.

▶ complete covers: a set of edges and nodes in which a
facility can always cover a given edge.

▶ partial covers: further refinement of the potential covers.
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Preprocessing: long edge modeling

The previous modeling assumes short edges: le ≤ δ.

▶ First approach: subdivide long edges into small edges.

▶ Second approach: directly model the covering condition on
long edge.
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Preprocessing: long edge modeling

(a) A facility is located at va (qe = 0)

(b) A facility is located at the tail
(0 < qe ≤ l̂e)

(c) No facility is located at the tail
(̂le < qe ≤ 2δ)

Figure: Covering a long edge e = (va, vb)

Key observation: once the location of the left-most facility is
determined, other facility locations are determined.
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MILP model 2

Modify MILP model 1 for covering on long edges. We add specific
variables and constraints, and other parts remain the same.

22 / 30



Algorithmic tool: CFLG.jl

▶ Implementation is based on JuMP and written in Julia.

▶ Input: a network and a cover radius δ.

▶ Output: the number of facilities and locations.
▶ Algorithmic options:

▶ EF: Covering edges in network.
▶ F0: MILP model 1 without delimitation.
▶ F: MILP model 1 with delimitation.
▶ SF: MILP model 1 with delimitation and some valid

inequalities.
▶ RF: MILP model 2.
▶ SFD: semi-continuous model, SF with facilities located at

nodes.
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Data

▶ Kgroup: It consists of 23 prize-collecting Steiner tree problem
instances, designed to have a local structure somewhat similar
to street maps.

▶ City: It consists of real data of 9 street networks for some
German cities.

▶ Random: It consists of 24 random networks instances
generated by the package “Networkx”
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Performance metric

▶ the relative dual gap is defined as:

σ :=
v − v

v
,

where v is an upper-bound and v is a lower-bound.

▶ the relative primal bound

vr :=
v

nsd
,

▶ t: the total running time in CPU seconds.

▶ S/A/T: the number of solved instances/ the number of
affected instances/ the number of total instances in the
benchmark.
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Experimental results I

Benchmark Radius
EF F0

time σ(%) vr (%) S/A/T time σ(%) vr (%) S/A/T

city
Small 1800.0 100.0% 100.0% 0/0/9 1801.7 56.8% 83.3% 0/3/9
Large 1800.0 100.0% 100.0% 0/0/9 1800.9 42.3% 36.2% 0/6/9

Kgroup A
Small 1800.0 100.0% 100.0% 0/0/11 1802.6 25.1% 85.0% 0/11/11
Large 1800.0 100.0% 100.0% 0/0/11 139.2 14.7% 19.2% 7/11/11

Kgroup B
Small 1800.0 100.0% 100.0% 0/0/12 1800.4 92.6% 98.8% 0/1/12
Large 1800.0 100.0% 100.0% 0/0/12 1800.1 93.2% 86.6% 0/1/12

random A
Small 1800.0 100.0% 100.0% 0/0/12 16.8 15.9% 54.8% 9/12/12
Large 1800.0 100.0% 100.0% 0/0/12 0.2 25.5% 19.5% 12/12/12

random B
Small 1800.0 100.0% 100.0% 0/0/12 1317.6 36.4% 63.3% 1/12/12
Large 1800.0 100.0% 100.0% 0/0/12 154.4 26.0% 10.0% 11/12/12

all
Small 1800.0 100.0% 100.0% 0/0/56 625.8 37.4% 74.8% 10/39/56
Large 1800.0 100.0% 100.0% 0/0/56 132.5 33.1% 25.9% 30/42/56

Table: Results for continuous models
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Experimental results II

Benchmark Radius
F SF

time σ(%) vr (%) S/A/T time σ(%) vr (%) S/A/T

city
Small 1802.9 29.5% 62.2% 0/9/9 1801.3 30.1% 66.9% 0/9/9
Large 1801.2 28.4% 21.7% 0/9/9 1800.9 29.1% 21.7% 0/9/9

Kgroup A
Small 1803.0 33.1% 82.2% 0/11/11 1801.3 32.0% 80.6% 0/11/11
Large 238.0 18.9% 19.1% 8/11/11 300.8 19.0% 19.1% 8/11/11

Kgroup B
Small 1800.6 80.8% 240.5% 0/12/12 1801.4 79.7% 191.9% 0/12/12
Large 1800.4 85.1% 80.5% 0/12/12 1800.7 85.9% 77.3% 0/12/12

random A
Small 20.2 16.5% 54.3% 9/12/12 16.1 17.1% 54.9% 9/12/12
Large 0.3 25.5% 19.5% 12/12/12 0.2 10.4% 17.9% 12/12/12

random B
Small 1574.2 38.8% 64.9% 1/12/12 1501.2 40.0% 67.5% 1/12/12
Large 220.5 19.9% 10.3% 9/12/12 175.7 18.8% 10.0% 11/12/12

all
Small 675.0 35.2% 86.2% 10/56/56 637.6 35.5% 83.6% 10/56/56
Large 163.0 30.2% 23.6% 29/56/56 160.9 24.9% 22.8% 31/56/56

Table: Results for continuous models
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Experimental results III

Benchmark Radius
RF

time σ(%) vr (%) S/A/T

city
Small 1804.4 16.2% 54.1% 0/9/9
Large 1801.5 25.8% 21.3% 0/9/9

Kgroup A
Small 1622.6 21.5% 77.5% 1/11/11
Large 158.9 19.2% 19.3% 8/11/11

Kgroup B
Small 1800.9 59.1% 154.2% 0/12/12
Large 1800.6 75.5% 63.3% 0/12/12

random A
Small 15.9 8.1% 54.3% 9/12/12
Large 0.3 26.6% 19.8% 12/12/12

random B
Small 1304.3 38.5% 63.8% 1/12/12
Large 190.2 19.8% 11.2% 9/12/12

all
Small 604.9 23.7% 75.4% 11/56/56
Large 146.6 29.2% 22.8% 29/56/56

Table: Results for continuous models
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More details

Code: https://github.com/lidingxu/cflg
Arxiv: Mercedes Pelegŕın and Liding Xu, “Continuous Covering on
Networks: Strong Mixed Integer Programming Formulations”
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Conclusion

▶ New preprocssing and MILP models for continuous
set-covering on networks.

▶ An open source implementation.
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