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Urban air mobility

Urban air mobility (UAM) is driven by advancements in
battery, distributed electric propulsion, and autonomy
technologies.
Electric vertical takeoff and landing (eVTOL) aircraft, are
expected to be safer, quieter, and less expensive to
operate than helicopters.
We study the safety design of UAM networks: install safety
landing sites (SLSs) for eVTOLs.
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Outline

Problem description.
Mathematical models and formulations.
Algorithms.
Numerical experiments.
Conclusion.
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Background

eVTOLs would exploit the vertical space i.e., to alleviate
congestion on the ground.
Safety is the primary consideration in network planning.
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Space networks

The 3d continuous sky is discretized into a 2d grid network.
Vertiports are subset of nodes of the network.
SLSs are located outside the grid, their covering areas are
balls.
Demands are transportation in eVTOLs among vertiports.
SLSs allow eVTOLs to land in their covered ranges.



6/22

s

t

Figure: A path from vertiport s to vertiport t (in red)
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Mathematical formulations

Mathematical formulations are derived from
multi-commodity flow (MCF) problem.
Unsplittable MCF is known to be NP−hard, but integer
programming approach is efficient in practice.
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Mathematical formulations

Two representations, edge and path formulations.
Compact Edge formulation: every node has flow
conservation constraints and associated variables, and
their size grows polynomially w.r.t. network size.
Path formulation: edge variables are aggregated into
path variables i.e. incident vectors. Exponential number of
path variables.
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SLS location problem

Decision variables are the routing of eVTOLs and the
selection of SLSs to install.
Objective: the cost of eVTOL transportation.
Cover constraints: every route is covered by SLSs.
Capacity constraints: each edge can have a limited
number of eVTOLs.
Budget constraints: the number of installed SLSs is less
than b.
Unsplittable constraints.
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Notations
The network G = (V ,A, c,m) where V and A is the set of
nodes and edges.
cij : The cost of moving 1 eVTOL on edge, (i , j) ∈ A.
mij : The capacity of eVTOLs on edge, (i , j) ∈ A.
D demands, demand h ∈ D requires transportation of a
eVTOL from a source vertiport sh ∈ V to a destination
vertiport th ∈ V .
¯̀ is the number of available SLSs.
A` is the set of edges covered by SLS ` ∈ {1, . . . , ¯̀}.
A0 is the set of edges covered by all vertiports.
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Edge formulation

min
x ,y ∑

h∈D
∑

(i,j)∈A
cijxh

ij

∑
(j,i)∈A

xh
ji − ∑

(i,j)∈A
xh

ij =


−1 if i = sh

+1 if i = th

0 otherwise
∀i ∈ N,h ∈ D

∑
h∈D

xh
ij ≤ mij ∀(i , j) ∈ A,

xh
ij ≤

¯̀

∑
`=1,(i,j)∈A`

y` ∀(i , j) ∈ A \ A0,h ∈ D

¯̀

∑
`=1

y` ≤ b

xij ∈ {0,1} ∀(i , j) ∈ A, y` ∈ {0,1} ∀` = 1, . . . , ¯̀
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Path formulation

min ∑
(i,j)∈A

cij

D

∑
h=1

∑
p∈Ph,(i,j)∈p

xh
p

∑D
h=1 ∑p∈Ph,(i,j)∈p xh

p ≤ mij ∀(i , j) ∈ A,
∑p∈Ph xh

p = 1 ∀h = [1,D],
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Path formulation

min ∑
(i,j)∈A

cij

D

∑
h=1

∑
p∈Ph,(i,j)∈p

xh
p

∑D
h=1 ∑p∈Ph,(i,j)∈p xh

p ≤ mij ∀(i , j) ∈ A,
∑p∈Ph xh

p = 1 ∀h = [1,D],

∑p∈Ph,(i,j)∈p xh
p ≤ ∑`

`=1,(i,j)∈A`
y` ∀h = [1,D], ∀(i , j) ∈ A \ A0,

∑`
`=1 y` ≤ b

xh
p ∈ {0,1} ∀h = [1,D], ∀p ∈ Ph,

y` ∈ {0,1} ∀` = {1, . . . , ¯̀}

Its linear relaxation is solved by the column generation.
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Algorithms

Column generation is an efficient method for solving large
scale linear programming.
Column generation progressively solves restricted master
problems (RMP).
Efficient when column size is exponential to row size (LP
relaxation of path formulation!).
Branch-and-bound: implicitly enumerates solutions for
combinatorical problems.
Branch-and-price: embeds column generation into
branch-and-bound.
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Column generation

How does reduce cost pricing work?
Answer: Look at the dual problem of LP relaxation.

LP relaxation:

min ∑
(i,j)∈A

cij

D

∑
h=1

∑
p∈Ph,(i,j)∈p

xh
p

∑D
h=1 ∑p∈Ph,(i,j)∈p xh

p ≤ mij ∀(i , j) ∈ A, (γij ≥ 0)
∑p∈Ph xh

p = 1 ∀h = [1,D], (µh ∈ R)

∑p∈Ph :(i,j)∈p xh
p ≤ ∑`

`=1:(i,j)∈A`
y` ∀h = [1,D], ∀(i , j) ∈ A \ A0,

(ηh
ij ≥ 0)

∑`
`=1 y` ≤ b (ξ ≥ 0)

xh
p ∈ [0,∞) ∀h = [1,D], ∀p ∈ Ph,

y` ∈ [0,∞) ∀` = {1, . . . , ¯̀}
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Pricing problem

The dual is:

max−∑(i,j)∈A γijmij −∑D
h=1 µh − ξ ∑`

`=1 b
∑(i,j)∈p(cij + γij) + µh + ∑(i,j)∈p:(i,j) 6∈A0

ηh
ij ≥ 0, ∀h = [1,D], ∀p ∈ Ph

−∑D
h=1 ∑(i,j)∈A`

ηh
ij + ξ ≥ 0, ∀`in{1, . . . , ¯̀}

γij ≥ 0, ∀(i , j) ∈ A
µh ∈ R, ∀h = [1,D]
ηh

ij ≥ 0, ∀h = [1,D],

∀(i , j) ∈ A \ A0
ξ ≥ 0.

Reduced cost of p ∈ Ph:
RC(p) = ∑(i,j)∈p(cij + γij) + µh + ∑(i,j)∈p:(i,j) 6∈A0

ηh
ij .

The column with the least reduced cost is found by a
shortest path algorithm.
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Numerical experiments: instances

Instance Nodes Edges Demands SLSs vertiports

1 36 120 3 16 4
2 48 164 6 20 6
3 63 220 7 20 6
4 100 360 11 36 16
5 225 840 17 49 36
6 324 1224 20 64 49
7 400 1520 25 81 64
8 529 2024 25 100 81

Table: Instances
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Numerical experiments: a visual example
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Figure: A template city
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Numerical experiments: computational results

I B
Edge formulation Path formulation

z∗ Gap(%) t Nodes z∗ Gap(%) t Nodes

1 5 175.98 0 0.02 1 175.98 0 0.53 4
2 5 355.92 0 0.05 1 355.92 0 0.2 23
3 5 591.19 0 4.74 1538 591.19 0 3600 128920
4 5 300.05 0 0.05 1 300.05 0 0.56 1
5 9 1512.13 0 22.83 1446 1512.18 0.31 3600 64666
6 20 2290.75 0 790.37 20861 - - 3600 33192
7 25 3025.70 0.35 3600 30341 - - 3600 10635
8 29 - - 3600 20861 - - 3600 10829

Compact edge formulation is solved by Cplex 12.10.0
single thread mode.
Path formulation is solved by Scip 7.0.1 with Cplex as a LP
solver.
Time limit is set to 3600 seconds.



20/22

Experiments: discussions

I B
Edge formulation Path formulation

z∗ Gap(%) t Nodes z∗ Gap(%) t Nodes

1 5 175.98 0 0.02 1 175.98 0 0.53 4
2 5 355.92 0 0.05 1 355.92 0 0.2 23
3 5 591.19 0 4.74 1538 591.19 0 3600 128920
4 5 300.05 0 0.05 1 300.05 0 0.56 1
5 9 1512.13 0 22.83 1446 1512.18 0.31 3600 64666
6 20 2290.75 0 790.37 20861 - - 3600 33192
7 25 3025.70 0.35 3600 30341 - - 3600 10635
8 29 - - 3600 20861 - - 3600 10829

Cplex indeed separates cuts to strengthen the edge
formulation.
The scip’s branch and price deactives cut separation.
SLS variable y makes the network design problem harder
than the routing problem.
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Conclusion

Summary
We propose an model for SLS location problem.
We propose 2 formulations for the model.
We devise algorithms to solve 2 formulations.
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Future work
Combine with Bender decomposition.
Improve the stability of column generation.
Valid inequalities.


