Optimal Location of Safety Landing Sites

Liding Xu Claudia D'Ambrosio, Leo Liberti, Sonia Vanier

OptimiX, LIX, École polytechnique

liding.xu@polytechnique.edu

July, EURO 2021

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ♡ < ♡ 1/22

- Urban air mobility (UAM) is driven by advancements in battery, distributed electric propulsion, and autonomy technologies.
- Electric vertical takeoff and landing (eVTOL) aircraft, are expected to be *safer*, *quieter*, *and less expensive to operate* than helicopters.
- We study the safety design of UAM networks: install safety landing sites (SLSs) for eVTOLs.

(ロ)、(型)、(E)、(E)、(E) の(C) 2/22

- Problem description.
- Mathematical models and formulations.

3/22

- Algorithms.
- Numerical experiments.
- Conclusion.

- eVTOLs would exploit the vertical space i.e., to alleviate congestion on the ground.
- Safety is the primary consideration in network planning.

- The 3d continuous sky is *discretized* into a 2d grid network.
- Vertiports are subset of nodes of the network.
- SLSs are located outside the grid, their covering areas are balls.
- **Demands** are transportation in eVTOLs among vertiports.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへへ

5/22

• SLSs allow eVTOLs to land in their covered ranges.

Figure: A path from vertiport *s* to vertiport *t* (in red)

- Mathematical formulations are derived from multi-commodity flow (MCF) problem.
- Unsplittable MCF is known to be \mathcal{NP} -hard, but integer programming approach is efficient in practice.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つ へ ()・

7/22

- Two representations, edge and path formulations.
- **Compact Edge formulation:** every node has flow conservation constraints and associated variables, and their size grows polynomially w.r.t. network size.
- **Path formulation:** edge variables are aggregated into path variables i.e. incident vectors. Exponential number of path variables.

- **Decision variables** are the routing of eVTOLs and the selection of SLSs to install.
- **Objective:** the cost of eVTOL transportation.
- Cover constraints: every route is covered by SLSs.
- Capacity constraints: each edge can have a limited number of eVTOLs.
- **Budget constraints:** the number of installed SLSs is less than *b*.

(ロ)、(型)、(E)、(E)、(E) の(で 9/22)

Unsplittable constraints.

Notations

- The network G = (V, A, c, m) where V and A is the set of nodes and edges.
- c_{ij} : The cost of moving 1 eVTOL on edge, $(i, j) \in A$.
- m_{ij} : The capacity of eVTOLs on edge, $(i, j) \in A$.
- *D* demands, demand *h* ∈ *D* requires transportation of a eVTOL from a source vertiport *s_h* ∈ *V* to a destination vertiport *t_h* ∈ *V*.
- $\overline{\ell}$ is the number of available SLSs.
- A_ℓ is the set of edges covered by SLS ℓ ∈ {1,..., ℓ}.
- *A*₀ is the set of edges covered by all vertiports.

$$\begin{split} \min_{x,y} \sum_{h \in D} \sum_{(i,j) \in A} c_{ij} x_{ij}^{h} \\ \sum_{(j,i) \in A} x_{ji}^{h} - \sum_{(i,j) \in A} x_{ij}^{h} = \begin{cases} -1 \text{ if } i = s^{h} \\ +1 \text{ if } i = t^{h} \\ 0 \text{ otherwise} \end{cases} \quad \forall i \in N, h \in D \\ 0 \text{ otherwise} \end{cases} \\ \sum_{h \in D} x_{ij}^{h} \leq m_{ij} \qquad \forall (i,j) \in A, \\ x_{ij}^{h} \leq \sum_{\ell=1,(i,j) \in A_{\ell}}^{\tilde{\ell}} y_{\ell} \qquad \forall (i,j) \in A \setminus A_{0}, h \in D \\ \sum_{\ell=1}^{\tilde{\ell}} y_{\ell} \leq b \\ x_{ij} \in \{0,1\} \quad \forall (i,j) \in A, y_{\ell} \in \{0,1\}, \forall \ell = 1, \dots, \tilde{\ell} \\ x_{ij} \in \{0,1\} \quad \forall (i,j) \in A, y_{\ell} \in \{0,1\}, \forall \ell = 1, \dots, \tilde{\ell} \end{split}$$

Path formulation

$$\begin{split} \min \sum_{\substack{(i,j) \in A}} c_{ij} \sum_{h=1}^{D} \sum_{p \in P^h, (i,j) \in p} x_p^h \\ \sum_{h=1}^{D} \sum_{p \in P^h, (i,j) \in p} x_p^h \leq m_{ij} \quad \forall (i,j) \in A, \\ \sum_{p \in P^h} x_p^h = 1 \quad \forall h = [1, D], \end{split}$$

$$\min \sum_{(i,j) \in A} c_{ij} \sum_{h=1}^{D} \sum_{p \in P^{h}, (i,j) \in p} x_{p}^{h}$$

$$\sum_{h=1}^{D} \sum_{p \in P^{h}, (i,j) \in p} x_{p}^{h} \le m_{ij} \qquad \forall (i,j) \in A,$$

$$\sum_{p \in P^{h}} x_{p}^{h} = 1 \qquad \forall h = [1, D],$$

$$\sum_{p \in P^{h}, (i,j) \in p} x_{p}^{h} \le \sum_{\ell=1, (i,j) \in A_{\ell}}^{\ell} y_{\ell} \qquad \forall h = [1, D], \forall (i,j) \in A \setminus A_{0},$$

$$\sum_{\ell=1}^{\ell} y_{\ell} \le b \qquad \forall h = [1, D], \forall p \in P^{h},$$

$$y_{\ell} \in \{0, 1\} \qquad \forall \ell = \{1, \dots, \ell\}$$

Its linear relaxation is solved by the column generation.

- Column generation is an efficient method for solving large scale linear programming.
- Column generation progressively solves restricted master problems (RMP).
- Efficient when column size is exponential to row size (LP relaxation of path formulation!).
- **Branch-and-bound:** implicitly enumerates solutions for combinatorical problems.
- **Branch-and-price:** embeds column generation into branch-and-bound.

Column generation

How does reduce cost pricing work?

Answer: Look at the dual problem of LP relaxation.

LP relaxation:

$$\min \sum_{\substack{(i,j) \in A \\ p \in P^h, (i,j) \in p \\ p \in P^h: (i,j) \\ p \in P^h$$

$$\begin{aligned} \forall (i,j) \in \mathcal{A}, (\gamma_{ij} \geq 0) \\ \forall h = [1, D], (\mu_h \in \mathcal{R}) \\ \forall h = [1, D], \forall (i,j) \in \mathcal{A} \setminus \mathcal{A}_0, \\ (\eta_{ij}^h \geq 0) \\ (\xi \geq 0) \\ \forall h = [1, D], \forall p \in \mathcal{P}^h, \\ \forall \ell = \{1, \dots, \overline{\ell}\} \end{aligned}$$

Pricing problem

The dual is:

$$\begin{split} \max &-\sum_{(i,j)\in A} \gamma_{ij} m_{ij} - \sum_{h=1}^{D} \mu_h - \xi \sum_{\ell=1}^{\ell} b \\ &\sum_{(i,j)\in p} (C_{ij} + \gamma_{ij}) + \mu_h + \sum_{(i,j)\in p: (i,j)\notin A_0} \eta_{ij}^h \geq 0, \quad \forall h = [1, D], \forall p \in P^h \\ &-\sum_{h=1}^{D} \sum_{(i,j)\in A_\ell} \eta_{ij}^h + \xi \geq 0, \quad \forall \ell in\{1, \dots, \bar{\ell}\} \\ &\gamma_{ij} \geq 0, \quad \forall (i,j) \in A \\ &\mu_h \in R, \quad \forall h = [1, D] \\ &\eta_{ij}^h \geq 0, \quad \forall (i,j) \in A \setminus A_0 \\ &\xi \geq 0. \end{split}$$

- Reduced cost of $p \in P^h$: $RC(p) = \sum_{(i,j)\in p} (c_{ij} + \gamma_{ij}) + \mu_h + \sum_{(i,j)\in p: (i,j)\notin A_0} \eta_{ij}^h.$
- The column with the least reduced cost is found by a shortest path algorithm.

Instance	Nodes	Edges	Demands	SLSs	vertiports
1	36	120	3	16	4
2	48	164	6	20	6
3	63	220	7	20	6
4	100	360	11	36	16
5	225	840	17	49	36
6	324	1224	20	64	49
7	400	1520	25	81	64
8	529	2024	25	100	81

Table: Instances

Numerical experiments: a visual example

Figure: A template city

Numerical experiments: computational results

I	В	Edge formulation				Path formulation			
		<u></u> <i>Z</i> *	Gap(%)	t	Nodes	Z*	Gap(%)	t	Nodes
1	5	175.98	0	0.02	1	175.98	0	0.53	4
2	5	355.92	0	0.05	1	355.92	0	0.2	23
3	5	591.19	0	4.74	1538	591.19	0	3600	128920
4	5	300.05	0	0.05	1	300.05	0	0.56	1
5	9	1512.13	0	22.83	1446	1512.18	0.31	3600	64666
6	20	2290.75	0	790.37	20861	-	-	3600	33192
7	25	3025.70	0.35	3600	30341	-	-	3600	10635
8	29	-	-	3600	20861	-	-	3600	10829

- Compact edge formulation is solved by Cplex 12.10.0 single thread mode.
- Path formulation is solved by Scip 7.0.1 with Cplex as a LP solver.
- Time limit is set to 3600 seconds.

I	В	Edge formulation				Path formulation			
		\overline{Z}^*	Gap(%)	t	Nodes	Z*	Gap(%)	t	Nodes
1	5	175.98	0	0.02	1	175.98	0	0.53	4
2	5	355.92	0	0.05	1	355.92	0	0.2	23
3	5	591.19	0	4.74	1538	591.19	0	3600	128920
4	5	300.05	0	0.05	1	300.05	0	0.56	1
5	9	1512.13	0	22.83	1446	1512.18	0.31	3600	64666
6	20	2290.75	0	790.37	20861	-	-	3600	33192
7	25	3025.70	0.35	3600	30341	-	-	3600	10635
8	29	-	-	3600	20861	-	-	3600	10829

- Cplex indeed separates cuts to strengthen the edge formulation.
- The scip's branch and price deactives cut separation.
- SLS variable *y* makes the network design problem harder than the routing problem.

Conclusion

Summary

- We propose an model for SLS location problem.
- We propose 2 formulations for the model.
- We devise algorithms to solve 2 formulations.

Future work

- Combine with Bender decomposition.
- Improve the stability of column generation.

Valid inequalities.