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Intersection cuts

The goal of intersection cuts: convexify a hard non-convex set S.
Useful for LP-based global optimization solvers.
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The history in discrete and continuous optimization:

» Continuous programs (Hoang 1964): S is the hypograph of a
convex function (maximization of a convex function!);

» Integer programs (Balas 1971): S is a lattice.
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Submodular functions

Submodular functions: discrete convex functions defined on
Boolean hypercube.

» Let f:{0,1}" — R be a submodular function, define
S :={(x,t) € {0,1}" x R : f(x) > t} the hypograph of f;
» Maximization problem (N ’P-hard):

MaXxe{0,1}n f(X) = MaX(x,t)econv(S) t.
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Outline of this talk

A\

Construction of S-free sets and their maximality;
Separation of intersection cuts;

Generalization and Boolean multilinear (quadratic)
constraints;

Applications and testing;
Open problems and future direction.
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> S-free set: a convex set C such that inter(C) NS = @.
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S-free sets: construction 1

Lifting.

Theorem
Let H be a maximal {0,1}"-free set, then H x R is a maximal
S-free set.

Remarks:
» Proof similar to mixed-lattice set;
» Examples: H = {x € R":0 < x <1} defined by a split.
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S-free sets: construction 2

Construct the Lovasz extension of f on [0,1]"”, and further extend
it to a continuous function f on R".

Lemma ) )
For all x € {0,1}", f(x) = f(x) and f : R" — R is a (continuous)
polyhedral convex function.
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S-free sets: construction 2 (cont.)

Facts: Linear components of f = facets of epi(f) = permutations
on {1l,---,n} = chainsin {0,1}".
Theorem B
conv(epi(f)) = epi(f) N ([0,1]" x R).
Remarks:
» Proof based on polymatroid [Atamtiirk et al. 2022].

> Separation of epi(f): Strongly polynomial time.
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S-free sets: construction 2 (cont.)

Theorem o
The epigraph epi(f) of f is a (non-maximal) S-free set.
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Why not maximal?

Theorem )

Let C include epi(f), C is a maximal S-free set if the following two
conditions are satsified:

» each of its facets contains a point (x, f(x)) (x € {0,1}") in
its relative interior;

» The boundary of S contains all points (x, f(x)) (x € {0,1}").

Remark: Proof similar to lattice set.
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A counter example

n =3, 6 = 3! permutations/chains/facets, and 8 = 23 points of
x, f(x)).

Figure: {0,1}3

3 facets (each facet supported by 4 points) are enough:

((0,0,0),(0,0,1),(0,1,1),(1,1,1)),

((0,0,0),(0,1,0),(1,1,0),(1,1,1)),

((0,0,0),(1,0,0),(1,0,1),(1,1,1)).
Dropping remaining facets from epi(f) = enlarging epi(f).
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Cut separation

» Reduction 1: The computation of one coefficient of
intersection cut is reduced to a line search problem: from an

interior point of epi(f), find the intersection point along a ray
to the border of the polyhedron;

» Reduction 2: Equivalent to finding the zero point of a
univariate piece-wise linear convex function.

(a) Line search (b) 1-D zero finding
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Zero finding

» Previous results [Chmiela et al. 2022, Xu et al. 2022] are
based on binary search.

» New discrete Newton algorithm similar to [lwata et al. 2008].
» Newton algorithm requires gradient information.

> Separation of epi(f) in a polynomial time implies that
gradients can be computed in a polynomial time.
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Generalization to submodular-supermodular functions

Consider § := {(x,t) € {0,1}" x R : fi(x) — fa(x) > (t}, with

¢ € {0,1}, f1, f» being submodular.

Theorem

Let fi, f> be the cor_wtinuous_ extensionf of f1,f on R", then

{(x,t) e R" x R : fi(x) — h(x') — VAR(X')(x — x") < Lt} is S-free.
Key idea: Construct the ‘best’ submodular over-estimator of the
submodular-supermodular function.
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Boolean multilinear constraint

Theorem
Given a Boolean multilinear function f : {0,1}" — R defined as

f(x) = X keik) @k [Ljea, Xj (for index sets Ax C {1,---, n}) with
K multilinear terms, let f = f; — f» where fi(x) := ) ax [[ X

kelK]  jEAk
a, <0
and f(x) :=— > ax [[ xj. Then fi,f, are submodular on
ke[K] JEAK
a, >0

{0,1}".
Remark: Apply the previous theorem to the Boolean multilinear
constraint f(x) > (t.
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Implementation and test

More insights come from coding and experiments:
» Implementation in SCIP 8.0.

P> Result 1: Maximal S-free sets does not imply practically good
cuts;

» Result 2: Performance difference between problems with
natural MILP and MINLP formulations, monotone and
non-monotone.
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Problem zoo

Monotone submodular maximization usually has a cardinality or
knapsack constraint.

> Max cut with positive weights: non-monotone submodular
maximization, natural MILP formulation.

» Exponential utility function maximization: monotone
submodular maximization, natural convex MINLP formulation
(too easy for SCIP).

» D-optimal design: submodular maximization, natural convex
MISDP/MICP formulation (not useful).

» MUBO: submodular-supermodular maximization.

18/21



30 “g05" and 30 “pw" instances with nonnegative weights from
Big Mac.

Default Submodular cut Split cut
closed time | closed relative time cuts | closed relative time cuts
standalone 0.04 5.13 | 0.16 4.40 85.40 20759 | 0.12 293 17.92 9253
embedded ‘ 0.22 12.62 ‘ 0.27 1.22  104.02 70.68 ‘ 0.27 122 3462 4515

Configuration

Table: Summary of MAX CUT results
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Multilinear unconstrained Boolean optimization

44 “autocorr_bern” MUBO instances from MINLPLib.

3 A Default Submodular cut Split cut
Configuration . . . . .
closed time | closed relative time cuts | closed relative time cuts
standalone 0.01 9.49 | 0.05 481 4354 4317 | 0.03 231 14.64 20.94
embedded 0.105 2252 | 0.11 1.13  49.61 13.80 | 0.106 1.01 25,58 28.21

Table: Summary of PSEUDO BOOLEAN MAXIMIZATION results
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Open problems and future

» Enlarging S-free set;

» Is the discrete Newton algorithm strongly polynomial time?
(unbounded test) [Goemans et al, 2017];

» Natural extension to submodular functions over integer lattice
(integer quadratic/multilinear constraint);

» Monoid strengthening of intersection cuts similar for
quadratic-constraint [Chmiela et al. 2022].

» Using the submodular overestimator for the
submodular-supermodular function: better approximation
algorithm? DC programming?
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