Modelling of piece-wise linear concave constraints in continous covering problems

Liding Xu, Claudia D'Ambrosio

OptimiX, LIX, École Polytechnique

November 14, 2024

イロン イボン イヨン イヨン 三日

1/22

Set covering problems on networks

- Consider a network N = (V, A),
- ▶ Vars: Put points in edges or nodes.

Set covering problems on networks

- Consider a network N = (V, A),
- Vars: Put points in edges or nodes.
- Each point has the same covering radius δ.
- Constraints: Cover all edges and nodes.

 \mathcal{P} denotes the set of covering points, and D denotes the set of points to cover. Let C(N) be the set of points in N.

 \mathcal{P} denotes the set of covering points, and D denotes the set of points to cover. Let C(N) be the set of points in N.

- Discrete: $\mathcal{P} = D = V$, classical set covering.
- Semi-continuous: either P = C(N) or D = C(N), reduced to the classical set covering.

 \mathcal{P} denotes the set of covering points, and D denotes the set of points to cover. Let C(N) be the set of points in N.

- Discrete: $\mathcal{P} = D = V$, classical set covering.
- Semi-continuous: either P = C(N) or D = C(N), reduced to the classical set covering.
- Continuous: both P = D = C(N), the continuous set covering on networks.

Objective: we use a subset $\mathcal{P}' \subset \mathcal{P}$ and minimize its cardinality P'.

Set covering problems on networks

(a) two points p and p'

d(p, v_a): the shortest path distance between points p and v_a.
 if d(p, v_a) ≤ δ, v_a is covered by p.

How to continuously cover an edge

Figure: Covering of an edge $e = (v_a, v_b) \in E$

- (Edge) MILP formulation by Fröhlich et al.: *P* is indexed by *A*.
- ► (Edge-vertex) MILP formulations by Mercedes et al.: P indexed by A ∪ V, preprocessing, long-edge reformulation.

- (Edge) MILP formulation by Fröhlich et al.: *P* is indexed by *A*.
- ► (Edge-vertex) MILP formulations by Mercedes et al.: P indexed by A ∪ V, preprocessing, long-edge reformulation.
- This work: compare (edge) reformulations (big-M, disjunctive, indicator).

How to model the covering constraint for an edge $e = (v_a, v_b)$:

$$\max_{p \in \mathcal{P}'_{v_a}} \left(\delta - d(v_a, p) \right) + \max_{p \in \mathcal{P}'_{v_b}} \left(\delta - d(v_b, p) \right) \ge \ell_e, \tag{1}$$

where $\max_{p \in \mathcal{P}'_{v}} (\delta - d(v, p))$ is the residual cover truncated at an end node v, and \mathcal{P}'_{v} is a subset of \mathcal{P} that can cover v.

How to model the covering constraint for an edge $e = (v_a, v_b)$:

$$\max_{p \in \mathcal{P}'_{v_a}} \left(\delta - d(v_a, p) \right) + \max_{p \in \mathcal{P}'_{v_b}} \left(\delta - d(v_b, p) \right) \ge \ell_e, \tag{1}$$

where $\max_{p \in \mathcal{P}'_{v}} (\delta - d(v, p))$ is the residual cover truncated at an end node v, and \mathcal{P}'_{v} is a subset of \mathcal{P} that can cover v.

Affine component of distance function

Identify the point p by its "home" edge $e' = (v'_a, v'_b)$, label p by its coordinate, a continuous variable $q_{e'} \in [0, \ell_{e'}]$. Define the "residual cover of v" function through v'_a or v'_b in $q_{e'}$:

$$\tau_{ve'i'}: q_{e'} \mapsto \tau_{ve'i'}(q_{e'}) := d(v, v'_i) + \mathbf{1}_{i'=a}q_{e'} + \mathbf{1}_{i'=b}(\ell_{e'} - q_{e'}).$$
(2)

The function is affine in $q_{e'}$.

Then, we can express the $\delta - d(v, p)$ as the maximum of two affine functions:

$$\delta - d(\mathbf{v}, \mathbf{p}) = \max_{(\mathbf{e}', \mathbf{a}'), (\mathbf{e}', \mathbf{b}')} (\delta - \tau_{\mathbf{v}\mathbf{e}'i'}(q_{\mathbf{e}'}))$$

Then, we can express the $\delta - d(v, p)$ as the maximum of two affine functions:

$$\delta - d(\mathbf{v}, \mathbf{p}) = \max_{(\mathbf{e}', \mathbf{a}'), (\mathbf{e}', \mathbf{b}')} (\delta - \tau_{\mathbf{v}\mathbf{e}'i'}(q_{\mathbf{e}'}))$$

Let S be a subset of $\mathcal{P}'_v \times \{a, b\}$ such that for all $(e', i') \in S$, $d(v, v'_i) \leq \delta$.

The covering constraint has a reformulation:

$$\max_{(e',i')\in S_{v_a}} (\delta - \tau_{v_a e'i'}(q_{e'}) + \max_{(e',i')\in S_{v_b}} (\delta - \tau_{v_b e'i'}(q_{e'}) \ge \ell_e, \quad (3)$$

This constraint is a piece-wise linear concave constraint. We try to overestimate the convex function in the left. Represent each max function by an indicator constraint. Then, the covering constraint reads as:

$$\sum_{\substack{(e',i')\in\mathcal{S}_{v}\\z_{ve'i'}\Rightarrow r_{v}\leq\delta-\tau_{ve'i'}(q_{e'})} z_{ve'i'} \in \{0,1\} \qquad (e',i')\in\mathcal{S}_{v} \qquad (4)$$

$$\ell_{e}\leq r_{v_{a}}+r_{v_{b}} \qquad e\in E \qquad (4)$$

$$q_{e'}\in[0,\ell_{e'}] \qquad e'\in E \qquad r_{v}\geq0 \qquad v\in V.$$

Let solvers handle it.

Using big-M to represent each possible argmax.

$$r_{v} \le M_{ve'i'}(1 - z_{ve'i'}) + \delta - \tau_{ve'i'}(q_{e'})$$
(5)

One can set $M \approx \delta$, we have a method to search tight big-Ms such that $M \approx \ell_e!$

Using disjunctive technique to model the max of affine functions. Where is the disjunctive system?

Using disjunctive technique to model the max of affine functions. Where is the disjunctive system? $\max_{(e',i')\in\mathcal{S}_v} \left(\delta - \tau_{ve'i'}(q_{e'}) \text{ is equivalent to:} \right.$

$$\bigvee_{(e',i')\in\mathcal{S}_{v}}\left[\begin{array}{c} 0\leq r_{v}\leq\delta-\tau_{ve'i'}(q_{e'})\\ 0\leq q_{e'}\leq\ell_{e'} \end{array}\right].$$
(6)

Only one clause could be true.

Disjunctive programming gives a MILP reformulation (in lifted space) without big-M:

- whose LP relaxation is tight (convex hull);
- but with additional variables.

We define the following affine function, similar to $\tau_{ve'i'}$ in (2):

$$R_{ve'i'}: (w, y) \mapsto R_{ve'i'}(w, y) := (\delta - d(v, v'_i) - \mathbf{1}_{i'=b}\ell_{e'})y + (\mathbf{1}_{i'=b} - \mathbf{1}_{i'=a})w.$$
(7)

Define

$$\mathcal{S}^{-1}(e') := \{ (v, i') : \exists i' \in \{a, b\}, (e', i') \in \mathcal{S}(v) \}.$$
(8)

Third approach: disjunctive technique

The reformulation:

$$\begin{aligned}
r_{v} &= \sum_{(e',i')\in\mathcal{S}_{v}} r_{ve'i'} \\
q_{e'} &= q_{ve'} + \sum_{i':(e',i')\in\mathcal{S}_{v}} q_{ve'i'} & e' \in (v) \\
r_{ve'i'} &\leq R_{ve'i'}(q_{ve'i'}, z_{ve'i'}) & (e',i')\in\mathcal{S}_{v} \\
q_{ve'i'} &\leq z_{ve'i'}\ell_{e'} & (e',i')\in\mathcal{S}_{v} \\
q_{ve'} &\leq \left(1 - \sum_{i':(e',i')\in\mathcal{S}_{v}} z_{ve'i'}\right)\ell_{e'} & e' \in (v) \\
r_{ve'i'}, q_{ve'i'} &\geq 0 & (e',i')\in\mathcal{S}_{v} \\
q_{e'}, q_{ve'} &\geq 0 & e' \in (v)
\end{aligned}$$

Implementation in Julia-JuMP and using CPLEX.

- Implementation in Julia-JuMP and using CPLEX.
- Algorithmic options:
 - EF-P: the big-M formulation for the edge model;
 - EF-PI: the indicator formulation of the edge model;
 - EF-PD: the disjunctive programming formulation.

the relative dual gap is defined as:

$$\sigma := \frac{\overline{\mathbf{v}} - \underline{\mathbf{v}}}{\overline{\mathbf{v}}},$$

where \overline{v} is an upper-bound and \underline{v} is a lower-bound.

the relative primal bound

$$v_r := \frac{\overline{v}}{n_{sd}},$$

- t: the total running time in CPU seconds.
- S/A: the number of solved instances/ the number of affected instances.

Two benchmarks: Small and Large.

Statistics	Small	Large	
Number of instances	32	24	
Min number of edges	9	185	
Medium number of edges	69	699	
Max number of edges	148	1035	
Average number of edges	71	584	
Average graph density	137.5	1162.1	

Table: The statistics of the benchmarks

Formulation	Small radius			Large radius				
	t	σ	Vr	S/A	t	σ	Vr	S/A
EF-P	269.4	21.0%	30.3%	11/31	21.1	18.0%	15.4%	28/32
EF-PI	287.6	20.2%	28.9%	10/32	24.1	20.3%	15.7%	28/32
EF-PD	284.4	17.4%	30.2%	12/31	42.9	9.6%	15.5%	26/32

Table: Results for the Small benchmark (32 instances)

Disjunctive formulation is the best.

Formulation	Small radius			Large radius				
	t	σ	Vr	S/A	t	σ	Vr	S/A
EF-P	1800.8	57.0%	63.3%	0/24	1631.5	53.4%	39.2%	3/24
EF-PI	1801.0	61.3%	65.4%	0/24	1608.0	55.2%	56.8%	1/24
EF-PD	1800.3	67.9%	69.5%	0/13	1630.8	63.3%	40.4%	2/13

Table: Results for the Large benchmark

Big-M formulation is the best. In practice, solvers may use big-M to reformulate indicator constrains, but their values are usually too loose.

- New edge model formulations for continuous set-covering on networks.
- For different scales of problems, a receipt for choosing the best formulations.
- The solver may not handle concave piece-wise linear functions properly, though lot of techniques have been studied.