Modelling of piece-wise linear concave constraints in continous covering problems

Liding Xu, Claudia D'Ambrosio

OptimiX, LIX, Ecole Polytechnique ´

November 14, 2024

1 / 22

K ロ メ イ 団 メ マ ヨ メ ス ヨ メ ニ ヨ

Set covering problems on networks

2 / 22

つひひ

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

- \blacktriangleright Consider a network $N = (V, A)$,
- ▶ Vars: Put points in edges or nodes.

Set covering problems on networks

- \blacktriangleright Consider a network $N = (V, A)$,
- ▶ Vars: Put points in edges or nodes.
- \blacktriangleright Each point has the same covering radius δ .
- ▶ Constraints: Cover all edges and nodes.

 P denotes the set of covering points, and D denotes the set of points to cover. Let $C(N)$ be the set of points in N.

 P denotes the set of covering points, and D denotes the set of points to cover. Let $C(N)$ be the set of points in N.

- \triangleright Discrete: $P = D = V$, classical set covering.
- ▶ Semi-continuous: either $P = C(N)$ or $D = C(N)$, reduced to the classical set covering.

 P denotes the set of covering points, and D denotes the set of points to cover. Let $C(N)$ be the set of points in N.

- \triangleright Discrete: $P = D = V$, classical set covering.
- ▶ Semi-continuous: either $P = C(N)$ or $D = C(N)$, reduced to the classical set covering.
- ▶ Continuous: both $P = D = C(N)$, the continuous set covering on networks.

Objective: we use a subset $\mathcal{P}' \subset \mathcal{P}$ and minimize its cardinality P'.

Set covering problems on networks

(a) two points p and p'

 \blacktriangleright $d(p, v_a)$: the shortest path distance between points p and v_a . ▶ if $d(p, v_a) \le \delta$, v_a is covered by p.

How to continuously cover an edge

Figure: Covering of [a](#page-6-0)n edge $e = (v_a, v_b) \in E$ \longrightarrow $E \longrightarrow$ $E \longrightarrow$ 299 5 / 22

- \blacktriangleright (Edge) MILP formulation by Fröhlich et al.: P is indexed by A.
- \blacktriangleright (Edge-vertex) MILP formulations by Mercedes et al.: $\mathcal P$ indexed by $A \cup V$, preprocessing, long-edge reformulation.
- \blacktriangleright (Edge) MILP formulation by Fröhlich et al.: P is indexed by A.
- \blacktriangleright (Edge-vertex) MILP formulations by Mercedes et al.: \varnothing indexed by $A \cup V$, preprocessing, long-edge reformulation.
- ▶ This work: compare (edge) reformulations (big-M, disjunctive, indicator).

How to model the covering constraint for an edge $e = (v_a, v_b)$:

$$
\max_{p \in \mathcal{P}'_{v_a}} (\delta - d(v_a, p)) + \max_{p \in \mathcal{P}'_{v_b}} (\delta - d(v_b, p)) \ge \ell_e, \tag{1}
$$

where max $_{\rho \in \mathcal{P}'_\mathsf{v}} \left(\delta - d(\mathsf{v}, \rho) \right)$ is the residual cover truncated at an end node v , and \mathcal{P}'_v is a subset of $\mathcal P$ that can cover v .

How to model the covering constraint for an edge $e = (v_a, v_b)$:

$$
\max_{p \in \mathcal{P}'_{v_a}} (\delta - d(v_a, p)) + \max_{p \in \mathcal{P}'_{v_b}} (\delta - d(v_b, p)) \ge \ell_e, \tag{1}
$$

where max $_{\rho \in \mathcal{P}'_\mathsf{v}} \left(\delta - d(\mathsf{v}, \rho) \right)$ is the residual cover truncated at an end node v , and \mathcal{P}'_v is a subset of $\mathcal P$ that can cover v .

Affine component of distance function

Identify the point p by its "home" edge $e' = (v_a', v_b')$, label p by its coordinate, a continuous variable $q_{e'} \in [0,\ell_{e'}].$ Define the "residual cover of v" function through v'_a or v'_b in $q_{e'}$:

$$
\tau_{ve'i'}: q_{e'} \mapsto \tau_{ve'i'}(q_{e'}) := d(v, v'_i) + \mathbf{1}_{i'=a} q_{e'} + \mathbf{1}_{i'=b} (\ell_{e'} - q_{e'}). (2)
$$

The function is affine in $q_{e'}$.

Then, we can express the $\delta - d(v, p)$ as the maximum of two affine functions:

$$
\delta - d(v, p) = \max_{(e', a'), (e', b')} (\delta - \tau_{ve'i'}(q_{e'}))
$$

Then, we can express the $\delta - d(v, p)$ as the maximum of two affine functions:

$$
\delta - d(v, p) = \max_{(e', a'), (e', b')} (\delta - \tau_{ve'i'}(q_{e'}))
$$

Let $\mathcal S$ be a subset of $\mathcal P_{\mathsf v}' \times \{ \mathsf a, \mathsf b \}$ such that for all $(\mathsf e', \mathsf i') \in \mathcal S$, $d(v, v'_i) \leq \delta$.

The covering constraint has a reformulation:

$$
\max_{(e',i')\in\mathcal{S}_{v_a}} (\delta - \tau_{v_a e' i'}(q_{e'}) + \max_{(e',i')\in\mathcal{S}_{v_b}} (\delta - \tau_{v_b e' i'}(q_{e'}) \geq \ell_e, \quad (3)
$$

This constraint is a piece-wise linear concave constraint. We try to overestimate the convex function in the left.

Represent each max function by an indicator constraint. Then, the covering constraint reads as:

$$
\sum_{(e',i') \in S_v} z_{ve'i'} = 1
$$
\n
$$
z_{ve'i'} \Rightarrow r_v \leq \delta - \tau_{ve'i'}(q_{e'}) \quad (e',i') \in S_v
$$
\n
$$
z_{ve'i'} \in \{0,1\} \qquad (e',i') \in S_v
$$
\n
$$
\ell_e \leq r_{v_a} + r_{v_b} \qquad e \in E
$$
\n
$$
q_{e'} \in [0,\ell_{e'}]
$$
\n
$$
r_v \geq 0 \qquad v \in V.
$$
\n(4)

11 / 22

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 『할 → 9 Q Q

Let solvers handle it.

Using big-M to represent each possible argmax.

$$
r_{v} \leq M_{ve'i'}(1 - z_{ve'i'}) + \delta - \tau_{ve'i'}(q_{e'}) \tag{5}
$$

One can set $M \approx \delta$, we have a method to search tight big-Ms such that $M \approx \ell_e!$

Using disjunctive technique to model the max of affine functions. Where is the disjunctive system?

Using disjunctive technique to model the max of affine functions. Where is the disjunctive system? max $_{(e',i')\in\mathcal{S}_{\mathcal{V}}}\left(\delta-\tau_{\mathcal{v}e'i'}(q_{e'})\right)$ is equivalent to:

$$
\vee_{(e',i')\in\mathcal{S}_v}\left[\begin{array}{c}0\leq r_v\leq \delta-\tau_{ve'i'}(q_{e'})\\0\leq q_{e'}\leq \ell_{e'}\end{array}\right].\tag{6}
$$

Only one clause could be true.

Disjunctive programming gives a MILP reformulation (in lifted space) without big-M:

- \triangleright whose LP relaxation is tight (convex hull);
- ▶ but with additional variables.

We define the following affine function, similar to $\tau_{\mathsf{ve}'i'}$ in [\(2\)](#page-12-0):

$$
R_{ve'i'} : (w, y) \mapsto R_{ve'i'}(w, y) := (\delta - d(v, v'_i) - \mathbf{1}_{i'=b} \ell_{e'})y +
$$

$$
(\mathbf{1}_{i'=b} - \mathbf{1}_{i'=a})w. \quad (7)
$$

Define

$$
S^{-1}(e') := \{ (v, i') : \exists i' \in \{a, b\}, (e', i') \in S(v) \}.
$$
 (8)

15 / 22

K ロ X K 個 X X ミ X X ミ X ミ X の Q Q Q

Third approach: disjunctive technique

The reformulation:

$$
r_{v} = \sum_{(e',i') \in S_{v}} r_{ve'i'}
$$

\n
$$
q_{e'} = q_{ve'} + \sum_{i':(e',i') \in S_{v}} q_{ve'i'} \qquad e' \in (v)
$$

\n
$$
r_{ve'i'} \le R_{ve'i'} (q_{ve'i'}, z_{ve'i'}) \qquad (e',i') \in S_{v}
$$

\n
$$
q_{ve'i'} \le z_{ve'i'} \ell_{e'}
$$

\n
$$
q_{ve'} \le \begin{pmatrix} 1 - \sum_{i':(e',i') \in S_{v}} z_{ve'i'} \end{pmatrix} \ell_{e'} \qquad e' \in (v)
$$

\n
$$
r_{ve'i'}, q_{ve'i'} \ge 0 \qquad (e',i') \in S_{v}
$$

\n
$$
r_{ve'i'}, q_{ve'i'} \ge 0 \qquad (e',i') \in S_{v}
$$

\n
$$
q_{e'}, q_{ve'} \ge 0 \qquad e' \in (v)
$$

▶ Implementation in Julia-JuMP and using CPLEX.

- ▶ Implementation in Julia-JuMP and using CPLEX.
- ▶ Algorithmic options:
	- \blacktriangleright EF-P: the big-M formulation for the edge model;
	- \blacktriangleright EF-PI: the indicator formulation of the edge model;
	- \blacktriangleright EF-PD: the disjunctive programming formulation.

 \blacktriangleright the relative dual gap is defined as:

$$
\sigma:=\frac{\overline{v}-\underline{v}}{\overline{v}},
$$

where \overline{v} is an upper-bound and v is a lower-bound.

 \blacktriangleright the relative primal bound

$$
v_r:=\frac{\overline{v}}{n_{sd}},
$$

- \blacktriangleright t: the total running time in CPU seconds.
- \triangleright S/A: the number of solved instances/ the number of affected instances.

Two benchmarks: Small and Large.

Table: The statistics of the benchmarks

Table: Results for the Small benchmark (32 instances)

Disjunctive formulation is the best.

Table: Results for the Large benchmark

Big-M formulation is the best. In practice, solvers may use big-M to reformulate indicator constrains, but their values are usually too loose.

- ▶ New edge model formulations for continuous set-covering on networks.
- ▶ For different scales of problems, a receipt for choosing the best formulations.
- \blacktriangleright The solver may not handle concave piece-wise linear functions properly, though lot of techniques have been studied.