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Set covering problems on networks

P2

D1

» Consider a network N = (V, A),

» Vars: Put points in edges or nodes.
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Set covering problems on networks

P2

D1

» Consider a network N = (V, A),
» Vars: Put points in edges or nodes.
» Each point has the same covering radius J.

» Constraints: Cover all edges and nodes.
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Extensions of set covering problems on networks

P denotes the set of covering points, and D denotes the set of
points to cover. Let C(N) be the set of points in N.

3/22



Extensions of set covering problems on networks

P denotes the set of covering points, and D denotes the set of
points to cover. Let C(N) be the set of points in N.

» Discrete: P = D =V, classical set covering.

» Semi-continuous: either P = C(N) or D = C(N), reduced to
the classical set covering.

3/22



Extensions of set covering problems on networks

P denotes the set of covering points, and D denotes the set of
points to cover. Let C(N) be the set of points in N.

» Discrete: P = D =V, classical set covering.

» Semi-continuous: either P = C(N) or D = C(N), reduced to
the classical set covering.

» Continuous: both P = D = C(N), the continuous set
covering on networks.

Objective: we use a subset P’ C P and minimize its cardinality P".
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Set covering problems on networks

(a) two points p and p’

» d(p,v,): the shortest path distance between points p and v,.
» if d(p,vs) <9, v, is covered by p.
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How to continuously cover an edge

(b) By one point, through

(a) By two points both ends
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(c) By one point, trough
one end

Figure: Covering of an edge e = (va,vp) & E
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Exact approaches

» (Edge) MILP formulation by Frohlich et al.: P is indexed by
A.

» (Edge-vertex) MILP formulations by Mercedes et al.: P
indexed by AU V/, preprocessing, long-edge reformulation.
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Exact approaches

» (Edge) MILP formulation by Frohlich et al.: P is indexed by
A.

» (Edge-vertex) MILP formulations by Mercedes et al.: P
indexed by AU V/, preprocessing, long-edge reformulation.

» This work: compare (edge) reformulations (big-M,
disjunctive, indicator).
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The difference comes from

How to model the covering constraint for an edge e = (va, vp):

fmax (6 = d(va, p)) + by (6 = d(vp, p)) > Le, (1)

where max,ep; (6 — d(v, p)) is the residual cover truncated at an
end node v, and P}, is a subset of P that can cover v.
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The difference comes from

How to model the covering constraint for an edge e = (va, vp):

fmax (6 = d(va, p)) + by (6 = d(vp, p)) > Le, (1)

where max,ep; (6 — d(v, p)) is the residual cover truncated at an
end node v, and P}, is a subset of P that can cover v.
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Affine component of distance function

(a) residual cover of v, in
p

Identify the point p by its “home” edge €’ = (v}, v}), label p by its
coordinate, a continuous variable g € [0, £o/]. Define the
“residual cover of v function through v} or v in ge:

Tve'i’ -+ Qe 7've’i’(qe’) = d(V, Vil)+1i’:aqe’+1i’:b(€e’_qe’)- (2)

The function is affine in gr.
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Max-affine representation of distance function

Then, we can express the 6 — d(v, p) as the maximum of two
affine functions:

0—d(v,p)= max (0 — Tyeri’(qe
(v, p) (e,ﬁa,),(e,’b,)( (ger))
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Max-affine representation of distance function

Then, we can express the 6 — d(v, p) as the maximum of two
affine functions:

0—d(v,p)= max (0 — Tyeri’(qe
(v, p) (e,ﬁa,),(e,?b,)( (ger))

Let S be a subset of P, x {a, b} such that for all (¢/,") € S,
d(v,v/) <.
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Piece-wise linear concavity

The covering constraint has a reformulation:

ma 5_ /1t / ma (S— 11 / >£7 3
(e’,i’)eXS,,a( Tvaeli (qe ) + (e’,i’)eXva( Tvpe!i (qe ) = te ( )

This constraint is a piece-wise linear concave constraint.
We try to overestimate the convex function in the left.
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First approach: indicator constraint

Represent each max function by an indicator constraint.
Then, the covering constraint reads as:

E Zyerit = 1

(e’,i")eS,

Zverir = 1y <0~ Tyei(qer) (€,7') €S,

Zye!i! € {0, 1} (e’, i/) €S, (4)
le <y, +nr, ecE

ger € [0, Ler] e e€E

r,>0 vev.

Let solvers handle it.
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Second approach: big-M technique

Using big-M to represent each possible argmax.
ry < Mve’i’(]- - Zve’i’) +0— 7—ve’i’(qe’) (5)

One can set M =~ §, we have a method to search tight big-Ms such
that M ~ ¢,!
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Third approach: disjunctive technique

Using disjunctive technique to model the max of affine functions.
Where is the disjunctive system?
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Third approach: disjunctive technique

Using disjunctive technique to model the max of affine functions.
Where is the disjunctive system?
max(e ines, (0 — Tverir(Ger) is equivalent to:

0 <nrn < 0 — Tve’i’(qe’)
\/(e',i’)GSv 0< qo <l . (6)

Only one clause could be true.
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Third approach: disjunctive technique

Disjunctive programming gives a MILP reformulation (in lifted
space) without big-M:

» whose LP relaxation is tight (convex hull);

» but with additional variables.
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Third approach: disjunctive technique

We define the following affine function, similar to 7,/ in (2):

Ryerir (Wa}/) = Rve’i’(Way) = (5 - d(V, Vll) - li’:bge’)y“‘
(]-i’:b - lilza)W. (7)

Define

SN = {(v,/): 3" € {a, b}, (€, /) €S(W)}.  (8)
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Third approach: disjunctive technique

The reformulation:
ry = E rve! i’
(e/,i")eSy
qe’ = Qve’ + E Ave’i’
i":(e!,i")ES,
Ive! i’ S Rve’i’(qve/i/7 Zve’i’)

Ave' < zve/i’ge/

Qe < [ 1 - Z Zyerjr | Ler

i’:(e,i")eSy
rve'i’s Querit = 0
de’s Que’ 2> 0
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» Implementation in Julia-JuMP and using CPLEX.
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» Implementation in Julia-JuMP and using CPLEX.
> Algorithmic options:
» EF-P: the big-M formulation for the edge model;

» EF-PI: the indicator formulation of the edge model;
» EF-PD: the disjunctive programming formulation.
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Performance metric

> the relative dual gap is defined as:

V-V
o= ,

where V is an upper-bound and v is a lower-bound.
» the relative primal bound
v
Ve '= —,
Nsd

» t: the total running time in CPU seconds.

» S/A: the number of solved instances/ the number of affected
instances.
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Two benchmarks: Small and Large.

Statistics Small | Large
Number of instances 32 24
Min number of edges 9 185
Medium number of edges 69 699
Max number of edges 148 1035
Average number of edges 71 584
Average graph density 137.5 | 1162.1

Table: The statistics of the benchmarks
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Experimental results |

Formulation Small radius Large radius

t o [ v [S/A |t o [ v | S/A
EF-P 269.4 21.0% 30.3% 11/31|21.1 18.0% 15.4% 28/32
EF-PI 287.6 20.2% 28.9% 10/32|241 203% 15.7% 28/32
EF-PD 284.4 17.4% 302% 12/31|429 9.6% 155% 26/32

Table: Results for the Small benchmark (32 instances)

Disjunctive formulation is the best.
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Experimental results |

Formulation Small radius Large radius

t o [ v [S/A |t o [ v | S/A
EF-P 1800.8 57.0% 63.3% 0/24 | 1631.5 53.4% 39.2% 3/24
EF-PI 1801.0 61.3% 65.4% 0/24 | 1608.0 55.2% 56.8% 1/24
EF-PD 1800.3 67.9% 69.5% 0/13 | 1630.8 63.3% 40.4% 2/13

Table: Results for the Large benchmark

Big-M formulation is the best. In practice, solvers may use big-M
to reformulate indicator constrains, but their values are usually too
loose.
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Conclusion

> New edge model formulations for continuous set-covering on
networks.

» For different scales of problems, a receipt for choosing the
best formulations.

» The solver may not handle concave piece-wise linear functions
properly, though lot of techniques have been studied.
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