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Set covering problems on networks

▶ Consider a network N = (V ,A),

▶ Vars: Put points in edges or nodes.

▶ Each point has the same covering radius δ.

▶ Constraints: Cover all edges and nodes.
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Extensions of set covering problems on networks

P denotes the set of covering points, and D denotes the set of
points to cover. Let C (N) be the set of points in N.

▶ Discrete: P = D = V , classical set covering.

▶ Semi-continuous: either P = C (N) or D = C (N), reduced to
the classical set covering.

▶ Continuous: both P = D = C (N), the continuous set
covering on networks.

Objective: we use a subset P ′ ⊂ P and minimize its cardinality P’.
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Set covering problems on networks

(a) two points p and p′

▶ d(p, va): the shortest path distance between points p and va.

▶ if d(p, va) ≤ δ, va is covered by p.
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How to continuously cover an edge

(a) By two points
(b) By one point, through
both ends

(c) By one point, trough
one end

Figure: Covering of an edge e = (va, vb) ∈ E
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Exact approaches

▶ (Edge) MILP formulation by Fröhlich et al.: P is indexed by
A.

▶ (Edge-vertex) MILP formulations by Mercedes et al.: P
indexed by A ∪ V , preprocessing, long-edge reformulation.

▶ This work: compare (edge) reformulations (big-M,
disjunctive, indicator).
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The difference comes from

How to model the covering constraint for an edge e = (va, vb):

max
p∈P ′

va

(δ − d(va, p)) + max
p∈P ′

vb

(δ − d(vb, p)) ≥ ℓe , (1)

where maxp∈P ′
v
(δ − d(v , p)) is the residual cover truncated at an

end node v , and P ′
v is a subset of P that can cover v .
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Affine component of distance function

(a) residual cover of va in
p

Identify the point p by its “home” edge e ′ = (v ′a, v
′
b), label p by its

coordinate, a continuous variable qe′ ∈ [0, ℓe′ ]. Define the
“residual cover of v” function through v ′a or v ′b in qe′ :

τve′i ′ : qe′ 7→ τve′i ′(qe′) := d(v , v ′i )+1i ′=aqe′+1i ′=b(ℓe′−qe′). (2)

The function is affine in qe′ .
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Max-affine representation of distance function

Then, we can express the δ − d(v , p) as the maximum of two
affine functions:

δ − d(v , p) = max
(e′,a′),(e′,b′)

(δ − τve′i ′(qe′))

Let S be a subset of P ′
v × {a, b} such that for all (e ′, i ′) ∈ S,

d(v , v ′i ) ≤ δ.
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Piece-wise linear concavity

The covering constraint has a reformulation:

max
(e′,i ′)∈Sva

(δ − τvae′i ′(qe′) + max
(e′,i ′)∈Svb

(δ − τvbe′i ′(qe′) ≥ ℓe , (3)

This constraint is a piece-wise linear concave constraint.
We try to overestimate the convex function in the left.
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First approach: indicator constraint

Represent each max function by an indicator constraint.
Then, the covering constraint reads as:∑

(e′,i ′)∈Sv

zve′i ′ = 1

zve′i ′ ⇒ rv ≤ δ − τve′i ′(qe′) (e ′, i ′) ∈ Sv

zve′i ′ ∈ {0, 1} (e ′, i ′) ∈ Sv

ℓe ≤ rva + rvb e ∈ E

qe′ ∈ [0, ℓe′ ] e ′ ∈ E

rv ≥ 0 v ∈ V .

(4)

Let solvers handle it.
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Second approach: big-M technique

Using big-M to represent each possible argmax.

rv ≤ Mve′i ′(1− zve′i ′) + δ − τve′i ′(qe′) (5)

One can set M ≈ δ, we have a method to search tight big-Ms such
that M ≈ ℓe !
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Third approach: disjunctive technique

Using disjunctive technique to model the max of affine functions.
Where is the disjunctive system?

max(e′,i ′)∈Sv
(δ − τve′i ′(qe′) is equivalent to:

∨(e′,i ′)∈Sv

[
0 ≤ rv ≤ δ − τve′i ′(qe′)

0 ≤ qe′ ≤ ℓe′

]
. (6)

Only one clause could be true.
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Third approach: disjunctive technique

Disjunctive programming gives a MILP reformulation (in lifted
space) without big-M:

▶ whose LP relaxation is tight (convex hull);

▶ but with additional variables.
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Third approach: disjunctive technique

We define the following affine function, similar to τve′i ′ in (2):

Rve′i ′ : (w , y) 7→ Rve′i ′(w , y) := (δ − d(v , v ′i )− 1i ′=bℓe′)y+

(1i ′=b − 1i ′=a)w . (7)

Define

S−1(e ′) := {(v , i ′) : ∃i ′ ∈ {a, b}, (e ′, i ′) ∈ S(v)}. (8)
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Third approach: disjunctive technique

The reformulation:

rv =
∑

(e′,i ′)∈Sv

rve′i ′

qe′ = qve′ +
∑

i ′:(e′,i ′)∈Sv

qve′i ′ e ′ ∈ (v)

rve′i ′ ≤ Rve′i ′(qve′i ′ , zve′i ′) (e ′, i ′) ∈ Sv

qve′i ′ ≤ zve′i ′ℓe′ (e ′, i ′) ∈ Sv

qve′ ≤

1−
∑

i ′:(e′,i ′)∈Sv

zve′i ′

 ℓe′ e ′ ∈ (v)

rve′i ′ , qve′i ′ ≥ 0 (e ′, i ′) ∈ Sv

qe′ , qve′ ≥ 0 e ′ ∈ (v)

(9)
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Experiments

▶ Implementation in Julia-JuMP and using CPLEX.

▶ Algorithmic options:
▶ EF-P: the big-M formulation for the edge model;
▶ EF-PI: the indicator formulation of the edge model;
▶ EF-PD: the disjunctive programming formulation.
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Performance metric

▶ the relative dual gap is defined as:

σ :=
v − v

v
,

where v is an upper-bound and v is a lower-bound.

▶ the relative primal bound

vr :=
v

nsd
,

▶ t: the total running time in CPU seconds.

▶ S/A: the number of solved instances/ the number of affected
instances.
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Benchmarks

Two benchmarks: Small and Large.

Statistics Small Large

Number of instances 32 24

Min number of edges 9 185

Medium number of edges 69 699

Max number of edges 148 1035

Average number of edges 71 584

Average graph density 137.5 1162.1

Table: The statistics of the benchmarks
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Experimental results I

Formulation
Small radius Large radius
t σ vr S/A t σ vr S/A

EF-P 269.4 21.0% 30.3% 11/31 21.1 18.0% 15.4% 28/32
EF-PI 287.6 20.2% 28.9% 10/32 24.1 20.3% 15.7% 28/32
EF-PD 284.4 17.4% 30.2% 12/31 42.9 9.6% 15.5% 26/32

Table: Results for the Small benchmark (32 instances)

Disjunctive formulation is the best.
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Experimental results II

Formulation
Small radius Large radius
t σ vr S/A t σ vr S/A

EF-P 1800.8 57.0% 63.3% 0/24 1631.5 53.4% 39.2% 3/24
EF-PI 1801.0 61.3% 65.4% 0/24 1608.0 55.2% 56.8% 1/24
EF-PD 1800.3 67.9% 69.5% 0/13 1630.8 63.3% 40.4% 2/13

Table: Results for the Large benchmark

Big-M formulation is the best. In practice, solvers may use big-M
to reformulate indicator constrains, but their values are usually too
loose.
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Conclusion

▶ New edge model formulations for continuous set-covering on
networks.

▶ For different scales of problems, a receipt for choosing the
best formulations.

▶ The solver may not handle concave piece-wise linear functions
properly, though lot of techniques have been studied.
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