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Introduction: Problem Setting

• We focus on the Binary Polynomial Optimization (BPO) problem:

min
x∈{0,1}n

f(x)

where f is a polynomial in n variables.
• Closely related is the Binary Non-negativity Problem (BNP):

Is f(x) ≥ 0 for all x ∈ {0, 1}n?

• The BPO is equivalent to finding the maximum λ such that f(x)− λ is binary non-negative. This is a
conic optimization problem:

λ∗ = max
λ∈R

{λ : f− λ is binary non-negative}

• Conic inner approximation leads to lower bounds on λ∗. Previous constructions include Lift-Project (LP),
Sherali-Adams (LP), and Sum-of-Squares (SDP), SONC/SAGE (geometric programs) hierarchies.
[Lasserre, 2015, Parrilo and Thomas, 2020, Sherali and Tuncbilek, 1992, Sherali and Tuncbilek, 1997]
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Our Contribution

• We propose a new class of sparse binary non-negativity certificates based on the polynomial’s signed
support pattern.

• We develop new LP relaxations for BPO that are sparsity-preserving.
• Key Idea: Decompose any polynomial f and leverage the fact that the non-negativity of certain

polynomial classes can be checked efficiently.
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Preliminaries
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Polynomial Classification

We classify binary polynomials based on the signs of their coefficients:
• PS (Positively Signed): All coefficients are non-negative.
• NS (Negatively Signed): All coefficients are non-positive.

• NNS (Nonlinearly Negatively Signed): Coefficients of all nonlinear monomials (degree ≥ 2) are
non-positive.

• NPS (Nonlinearly Positively Signed): Coefficients of all nonlinear monomials are non-negative.
• NDS (Nonlinearly Differently Signed): Neither NNS nor NPS.

Key Property: NNS polynomials are submodular, and NPS polynomials are supermodular.
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Signed Support Decomposition

Any binary polynomial f can be uniquely decomposed as:

f(x) = NNS(f)(x) + PS(f)(x)

• NNS(f) is the NNS component of f:

NNS(f)(x) := f0 +
∑

α∈A: degree-1 exponent vectors

fαxα +
∑

α∈A: high-degree exponent vectors

min(fα, 0)xα

• PS(f) is the PS component of f:

PS(f)(x) :=
∑

α∈A: high-degree exponent vectors

max(fα, 0)xα
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Binary Non-negativity of NNS Polynomials
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Minimizing NNS Polynomials

• The problem minx∈{0,1}n f(x) for an NNS polynomial f can be solved efficiently, due to submodularity.
• A more efficient approach reduces the problem to a minimum cut problem in a specially constructed

graph. [Billionnet and Minoux, 1985, Hansen, 1974, Picard and Queyranne, 1982].
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Reduction to Min-Cut

For an NNS polynomial f(x) = f0 +
∑

α∈A fαx
α +

∑
j∈N fjxj (with fα ≤ 0 for α ∈ A), we have:

min
x∈{0,1}n

f(x) = fa + min
x∈{0,1}n

fb(x)

where fa = f0 +
∑

α∈A fα is a constant and

fb(x) =
∑
α∈A

−fα(1− xα) +
∑
j∈N

fjxj

fc(x) :=
∑

α∈A:high-degree

−fα(1− xα) +
∑
j∈N

max(fj, 0)xj. (1)

The graph will be a bipartite graph of nodes for nonlinear monomials A and linear monomials N .
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Min cut and max flow
Example: fc(x) = (1− x2x3) + 2(1− x1x3x4) + 5(1− x3x5) + x2 + x3.
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Figure: The network Gc with source s and terminate vt is derived from fc . Nodes are labeled by their values in the MIN CUT,
the MAX FLOWs and capacities of edges are labeled above, and the cut crosses solid red edges.
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LP Formulation for NNS Non-negativity

• The min-cut problem has a dual max-flow problem, which can be formulated as a linear program (LP).
• We show that this duality yields an extended LP formulation for the cone NNS+(s).
• Technical reductions: The condition minx∈{0,1}n f(x) ≥ 0 is equivalent to:

f0 +
∑
α∈A

fα +
∑
j∈N

ρj vt ≥ 0

ρvs α ≤ −fα ∀α ∈ A

ρvs α =
∑

j∈supp(α)

ραj ∀α ∈ A

ρvs j +
∑
α∈Aj

ραj = ρj vt ∀j ∈ N

ρj ≤ fj ∀j ∈ N

Here, ρ are flow variables.
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Concave Extensions of PS Polynomials
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Handling the PS Component

• The PS component PS(f) is a supermodular function.
• We use piecewise linear concave extensions to find a set of linear functions that overestimate PS(f).
• Let M(sp) be a set of ”overestimation matrices”. For each M ∈ M(sp), MPS(f) is a linear polynomial and
(MPS(f))(x) ≥ PS(f)(x) for x ∈ {0, 1}n.

• The extension is exact if minM∈M(sp)(MPS(f))(x) = PS(f)(x).
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Types of Concave Extensions

• Standard Extension: Based on monomial linearization. For each monomial xα, pick one variable xj
where j ∈ supp(α).

(Mσf)(x) =
∑

α∈supp(s)

fαxσ(α)

Number of matrices:
∏

α∈supp(s) |α| ≤ dm.
• Lovász Extension: Based on permutations of variables. For each permutation π of {1, ...,n}:

(Mπf)(x) =
n∑
j=1

(
f
( j∑

i=1

eπ(i)

)
− f
( j−1∑

i=1

eπ(i)

))
xπ(j)

Number of matrices: n!. Can be filtered down to 2n.
Loose extension is better than tight extension!
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BPO Reformulation
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Certifying Non-negativity for NDS Polynomials

Lemma
A polynomial f = NNS(f) + PS(f) is binary non-negative if and only if for every overestimation matrix M for
PS(f), the NNS polynomial

NNS(f) +MPS(f)

is binary non-negative.

• This reduces the BNP for a general polynomial f to a set of BNPs for NNS polynomials.
• Each of these NNS-BNPs can be checked efficiently.
• NNS(f) +MPS(f) ≥ 0 is a polyhedral cone!
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Signed Support Decomposition of a Pattern s

Definition 5

Given a signed support pattern s ∈ {−1, 0, 1}{0,1}
n (with linear terms in the NNS part), we decompose it into

two disjoint parts:
s = snn + sp

Conditions on the Decomposition:
• snn, sp ∈ {−1, 0, 1}{0,1}

n

• snn
{0,1}n2:n

≤ 0
(The non-linear part of snn is purely negative)

• sp
{0,1}n2:n

≥ 0
(The non-linear part of sp is purely positive)

• sp
{0,1}n0:1

= 0
(The PS part has no linear or constant terms)

• supp(snn) ∩ supp(sp) = ∅
(The supports are disjoint)

Derived Complexity Parameters:
• For each part i ∈ {nn,p}:

• mi := | supp(si)|
(Number of monomials)

• di := maxα∈supp(si) |α|
(Maximum degree)

• ni := |N (si)|
(Number of variables)

• For the combined pattern s:
• m := mnn +mp
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The Cone of Non-Negative Polynomials

We define the cone of binary non-negative NDS polynomials with a given signed support pattern s:

NDS+(s) := {f ∈ R(x) : NNS(f) ∈ SSC(snn), PS(f) ∈ SSC(sp),

∀M ∈ M(sp),NNS(f) +MPS(f) ∈ NNS+(snn)}

Theorem
NDS+(s) is a convex polyhedral cone with an extended LP formulation of size polynomial in m,d and linear in
Γ(sp) (the number of overestimation matrices).
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Signed Reformulation of BPO

The original BPO problem is equivalent to the following conic optimization problem:

λ⋆ = max
λ∈R

{λ : f− λ ∈ NDS+(s)}

• This is an LP with a potentially large number of constraints, depending on Γ(sp).
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Hierarchies of Relaxations
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Refined Signed Support Decomposition

• To manage the complexity from Γ(sp), we don’t handle the whole PS part at once.
• We create a refined signed support decomposition of f:

f = g+
ℓ∑

k=1

fk

where g is a PS polynomial and each fk is a signed certificate from a simpler cone NDS+(θk).
• This defines an inner approximation of the full cone:

SoSC(Θ(s)) ⊆ NDS+(s)
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Hierarchical Partition

• We use a hierarchical partition tree to systematically create nested families of these inner
approximations.

• At level i of the hierarchy, we partition the ”difficult” part of the problem (either monomials or variables
of the PS part) into smaller, manageable chunks.

• This gives a sequence of cones:

SoSC(Θ1(s)) ⊆ SoSC(Θ2(s)) ⊆ · · · ⊆ SoSC(Θh̄(s)) ≈ NDS+(s)

• This results in a hierarchy of LP relaxations with improving bounds.
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Two Hierarchies of Relaxations

• Standard Signed Relaxations:
• Partitions the set of monomials of the PS part.
• Converges in at most h̄ ≤ ⌈logmp⌉ steps.
• Complexity of level i: O(mnndnnmpd2

i
p ).

• Lovász Signed Relaxations:
• Partitions the set of variables of the PS part.
• Converges in at most h̄ ≤ ⌈lognp⌉ steps.
• Complexity of level i: O(mnndnnmp2

2i).
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Computational Results
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Experimental Setup

• We tested our relaxations on MAX CUT problem instances from the Biq Mac library.
• We compared our Standard Signed Relaxations (levels 1, 2, 3) with the first level of the Sherali-Adams

and Lasserre hierarchies.
• Metrics: solution time and relative duality gap.
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Results

2Setting pm1s_ni w01_100 t2gn_seed t3gn_seed All
gap time gap time gap time gap time gap time

SheraliAdams level 1 0.509 0.0 0.47 0.0 0.173 0.0 0.277 0.0 0.373 0.0
Lasserre level 1 0.127 4.1 0.115 7.4 0.183 340.8 0.189 443.5 0.144 27.9

Standard signed 1 0.275 7.6 0.252 12.2 0.104 9.3 0.167 24.6 0.21 11.0
Standard signed 2 0.253 14.7 0.24 26.4 0.095 55.5 0.161 125.0 0.196 32.1
Standard signed 3 0.239 29.3 0.229 49.2 0.088 128.7 0.156 304.9 0.186 67.2

Table: Summary of performance metrics.
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Summary of Results

• The Sherali-Adams relaxation is fast but gives weak bounds.
• The Lasserre relaxation gives strong bounds but can be slow, especially for larger instances.
• Our Standard Signed Relaxations offer a good trade-off:

• They are competitive with the Lasserre relaxation in terms of bound quality.
• They show better scalability on larger problem instances (but depends on signs).
• Higher levels of our hierarchy consistently improve the bounds.
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Conclusion
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Conclusion

• We introduced a new method for constructing LP relaxations for BPO based on the signed support
pattern of the polynomial.

• Our method leverages the efficient minimization of NNS polynomials and concave extensions of PS
polynomials.

• We proposed two hierarchies of relaxations (Standard and Lovász) that are sparsity-preserving and
converge to the true optimum.

• Tailored LP solvers?
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