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Set covering problems on networks

b2

D1

» Consider a network N = (V/, A),

> Every edge in A is a continuum.

» C(N) is the union of edges A and nodes N.
» We aim to cover C(N) rather than V.
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Set covering problems on networks

(a) two facilities points p
and p’

» Let d(p1, p2) measure the shortest path distance between two
points p; and pp in C(N).

» Each point p € C(N) can cover the points in C(N) with
distance at most §.
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Extensions of set covering problems on networks

Here we use F to denote the set of facility locations, and D to
denote the set of demands.

» Discrete: F = D =V, a classical set covering problem.

» Semi-continuous: either F = C(N) or D = C(N), reduced to
the classical set covering problem (tractable).

» Continuous: both F = D = C(N), the continuous set
covering on networks.
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How to continuously cover an edge

(b) By one point, through

a) By two points
(2) By P both ends
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(c) By one point, trough

one end
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Figure: Covering of an edge e = (va,vp) € E



Existing exact approach: MILP

» The only existing MILP formulation is by Frohlich et al.,
“Covering edges in network™.

» Basic assumption: edge length is at most §.

» The existing MILP assumes that every pair of edges can cover
each other, so the size is large.

» MIP solvers cannot solve this MILP for moderate networks.
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Our contribution

In practice, many edges are far away, and edge lengths can greater
than 6.

» Various preprocessing techniques: delimitation and modelling
long edges.

» Two main new MILP models and some strengthening
technique.

» An open-source implementation.
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Modeling the facilities

We want to label/index a set of potential facilities.

>
>

>
>

Two types of facility index: N U A.

0-1 facility variables y € {0,1}: 1 for installed, 0 for not
installed.

Node facilities: y, associated node v € N.

Edge facilities: y. associated edge e € A, with a free location
variable g. € [0, Z¢].

These variables determine P C C(N), locations of installed
facilities.
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Modeling the covering condition

(a) By two points

» The residual cover r,,, r,,: the truncated length of covering
paths.
ry == max(d(p, v) — 9,0).
peP

» The edge e = (v,, vp) is covered if r,, + r,, > . (the length
of e).
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Modeling the covering condition

>
ax(d —6,0 ax(d —6,0)>7¢
max(d(p, va) = 0,0) + max(d(p, vb) = 6,0) > Le
is a concave constraint.
>

d —4,0 d —-4,0
rggg( (P, va) — 6, ),r;leag( (P, vb) —6,0)

are piece-wise linear functions.

» big-M technique (with extra binary variables) models
max, argmax of piece-wise linear functions.

» Inner representation: d(p, va,),d(p, vp) are linear constraints
ony,q.
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Preprocessing: delimitation

A facility in an edge can only cover its neighbors locally (distance
at most §)!

>

>

delimitation: a concrete characterization (covers) of
d-neighbors for edges and facilities.

potential covers, complete covers, and partial
covers.

Simple covering condition:

max (d(p, va) — 0,0) + max (d(p, vp) — 0,0) > Lo,
pEP(e) pEP(e)

with P(e) C P.

Less binary variables, smaller big-M.
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MILP Model 1

min Z i (6a)
feF

st we > yy eeE. feF.le) (6b)
w, < Z yr ceF (6c)

feFe(e)
Ty > 1— Z (1—w.) veV (6d)
e E(v)
Ty S Wwe veVee E(v) (6e)
Yor, T Yer <1 ¢ € B, € {a,b} (6f)
4o < loye ek (62)
le(l —we) S 1y, + Ty, ee E (6h)
ot Y At D dwer =1 vev (61)
v'€Vp(v) (ef,i)eETp(v)

oo S VeV, EV,(0) (6]
Zyetit X Yer v eV, (¢,i") € ET,(v) (6k)
r, <M, (1-z,) veV (61)
ry < Mypr (1 — zpw) + 6 — d(v,0") v eV, v € V,(v) (6m)
Ty < Myerir(1 = Zyeri) + 6 = Toerir (Qer) ve V(i) e EL,(v) (6n)
yr we € {0,1} feF.ecE (6o)
Ty, Zpwts Zoerst € {0,1} v e V0 €V,(v),(e,i) € ET,(v) (6p)
Ger Ty > 0 ecEveV. (6q)
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Preprocessing: long edge modeling

The previous modeling assumes short edges: /. < §. Large edges?
» First approach: subdivide long edges into small edges.

» Second approach: directly model the covering condition on
long edge.

13/21



Preprocessing: long edge modeling

20 20 20
Vq Uy

(a) A facility is located at v, (ge = 0)

20 20 20 20 20 25

e B s e o o—X—o—e

Ya =26 Ya 26
(b) A facility is located at the tail (c) No facility is located at the tail
(0<ge<le) (e < ge < 20)

Figure: Covering a long edge e = (va, vp)

#facilities in Figures 4a and 4b = #facilities in Figure 4c +1. An
indicator variable can model tansition of two states.
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MILP model 2

Va 26 Va 20 Up

» The location of the left facility determines the other facility
locations (20).

» Scalability (invariant to edge length): need only one indicator
variable for state transition and a location variable for the left
facility.

» Modification of MILP model 1: add specific variables and

constraints for long edges, and other parts for small edges
remain the same.

15/21



Algorithmic tool: CFLG.jl

» Implementation is based on JuMP and written in Julia.
» Input: a network and a cover radius §.

» Qutput: the number of facilities and locations.
» Algorithmic options:
» EF: Covering edges in network by Frohlich.
»> FO/F: MILP model 1 without/with delimitation.
» SF: MILP model 1 with delimitation and some valid
inequalities.
» RF: MILP model 2.

16/21



Performance metric

» the relative dual gap is defined as:

vV—v
o= —,
v

where V is an upper-bound and v is a lower-bound.
» the relative primal bound
v
VP i= —,
Nsd

» t: the total running time in CPU seconds.

» S/A/T: the number of solved instances/ the number of
affected instances/ the number of total instances in the
benchmark.
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Experimental results |

Benchmark | Radius | Fo
time [ o(%) [w(%) [S/A/T [time [a(%) [ v(%) [S/A/T
city Small | 1800.0 100.0% 100.0% 0/0/9 | 1801.7 56.8% 83.3% 0/3/9
Large | 1800.0 100.0% 100.0%  0/0/9 | 1800.9 423% 36.2% 0/6/9
Kgroup.s | Small | 18000 100.0% 100.0% 0/0/11 | 18026 25.1% 850% 0/11/11
Large | 1800.0 100.0% 100.0% 0/0/11 | 1392 147% 19.2% 7/11/11
Korouo | SMall | 18000 100.0% 1000% 0/0/12 | 18004 92.6% 98.8% 0/1/12
group Large | 1800.0 100.0% 100.0% 0/0/12 | 1800.1 93.2% 86.6% 0/1/12
ondoma | Small | 18000 100.0% 100.0% 0/0/12 | 168 159% 54.8% 9/12/12
Large | 1800.0 100.0% 100.0% 0/0/12 02 255% 195% 12/12/12
ondomp | Small | 1800.0 100.0% 1000% 0/0/12 | 1317.6 36.4% 63.3% 1/12/12
Large | 1800.0 100.0% 100.0% 0/0/12 | 1544 26.0% 10.0% 11/12/12
o Small | 1800.0 100.0% 100.0% 0/0/56 | 625.8 37.4% 74.8% 10/39/56
Large | 1800.0 100.0% 100.0% 0/0/56 | 1325 33.1% 25.9% 30/42/56

Table: Results for continuous models
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Experimental results |

Benchmark | Radius F S.F
tme | o(%) [ v(%) [ S/A/T  |time [o(%) | w(%) |S/A/T
city Small | 18029 295%  62.2% 0/9/9 | 18013 30.1% 66.9% 0/9/9
Large | 18012 28.4%  21.7% 0/9/9 | 18009 20.1%  21.7% 0/9/9
ioroun s | SMall | 1803.0 33.1%  822%  0/11/11| 18013 320%  80.6% 0/11/11
group Large | 2380 18.9% 10.1% 8/11/11 | 300.8 19.0% 10.1% 8/11/11
ioroun | SMall | 1800.6 80.8% 240.5%  0/12/12 | 18014 79.7% 191.9% 0/12/12
group Large |1800.4 85.1% 80.5% 0/12/12 | 1800.7 85.9% 77.3% 0/12/12
andom s | Sl 202 165% 54.3% 9/12/12 | 161 17.1% 54.9% 9/12/12
Large 03 255% 10.5% 12/12/12 02 104% 17.9% 12/12/12
condomp | SMall | 15742 38.8%  64.9%  1/12/12| 15012 40.0%  67.5% 1/12/12
Large | 2205 10.9% 10.3% 9/12/12 | 1757 188% 10.0% 11/12/12
o Small | 6750 352% 86.2% 10/56/56 | 637.6 355% 83.6% 10/56/56
Large | 163.0 30.2% 23.6% 29/56/56 | 160.9 24.9% 22.8% 31/56/56

Table: Results for continuous models
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Experimental results |l

. RF

Benchmark | Radius tme ‘a(%) ‘Vr(%) ‘S/A/T
city Small | 18044 162% 54.1% 0/9/9
Large | 18015 25.8% 21.3% 0/9/9

kgroupn | SMal | 16226 2L5%  77.5% 1/11/11
| Large | 1589 102% 19.3% 8/11/11
oroun p | Small | 18000 59.1% 154.2% 0/12/12
ETOUP-2 | Large | 18006 75.5%  63.3% 0/12/12
Small 159 81% 543% 9/12/12
randomh ) o oe 0.3 26.6% 19.8% 12/12/12
Small | 13043 385% 63.8% 1/12/12

randonB 1) Jee | 1002 19.8% 11.2% 9/12/12
1 Small | 6049 237% 75.4% 11/56/56
Large | 1466 29.2%  22.8% 29/56/56

Table: Results for continuous models
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Conclusion

» New preprocssing and MILP models for continuous
set-covering on networks.

» An open source implementation:
https://github.com/lidingxu/cflg .

» Pelegrin, Mercedes, and Liding Xu. " Continuous covering on

networks: Improved mixed integer programming
formulations.” Omega (2023): 102835.
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