MILP models for continuous set covering on networks

Liding Xu, Mercedes Pelegrín

OptimiX, LIX, École Polytechnique

March 1, 2023

Set covering problems on networks

- Consider a network N = (V, A),
- Every edge in A is a continuum.
- C(N) is the union of edges A and nodes N.
- We aim to cover C(N) rather than V.

Set covering problems on networks

(a) two facilities points p and p'

- Let d(p₁, p₂) measure the shortest path distance between two points p₁ and p₂ in C(N).
- Each point p ∈ C(N) can cover the points in C(N) with distance at most δ.

Here we use F to denote the set of facility locations, and D to denote the set of demands.

- Discrete: F = D = V, a classical set covering problem.
- Semi-continuous: either F = C(N) or D = C(N), reduced to the classical set covering problem (tractable).
- Continuous: both F = D = C(N), the continuous set covering on networks.

How to continuously cover an edge

Figure: Covering of an edge $e = (v_a, v_b) \in E$ is a set of 5/21

- The only existing MILP formulation is by Fröhlich et al., "Covering edges in network".
- Basic assumption: edge length is at most δ .
- The existing MILP assumes that every pair of edges can cover each other, so the size is large.
- MIP solvers cannot solve this MILP for moderate networks.

In practice, many edges are far away, and edge lengths can greater than $\delta.$

- Various preprocessing techniques: delimitation and modelling long edges.
- Two main new MILP models and some strengthening technique.
- An open-source implementation.

We want to label/index a set of potential facilities.

- Two types of facility index: $N \cup A$.
- ▶ 0-1 facility variables y ∈ {0,1}: 1 for installed, 0 for not installed.
- ▶ Node facilities: y_v associated node $v \in N$.
- ► Edge facilities: y_e associated edge e ∈ A, with a free location variable q_e ∈ [0, ℓ_e].
- ► These variables determine P ⊂ C(N), locations of installed facilities.

Modeling the covering condition

(a) By two points

The residual cover r_{va}, r_{vb}: the truncated length of covering paths.

$$r_{\mathbf{v}} := \max_{\mathbf{p}\in P} (d(\mathbf{p},\mathbf{v}) - \delta, \mathbf{0}).$$

The edge e = (v_a, v_b) is covered if r_{va} + r_{vb} ≥ ℓ_e (the length of e).

$$\max_{p \in P} (d(p, v_a) - \delta, 0) + \max_{p \in P} (d(p, v_b) - \delta, 0) \geq \ell_e$$

is a concave constraint.

$$\max_{p \in P} (d(p, v_a) - \delta, 0), \max_{p \in P} (d(p, v_b) - \delta, 0)$$

are piece-wise linear functions.

- big-M technique (with extra binary variables) models max, argmax of piece-wise linear functions.
- Inner representation: d(p, v_a), d(p, v_b) are linear constraints on y, q.

A facility in an edge can only cover its neighbors locally (distance at most δ)!

- delimitation: a concrete characterization (covers) of δ-neighbors for edges and facilities.
- potential covers, complete covers, and partial covers.
- Simple covering condition:

$$\max_{p\in P(e)} (d(p,v_{\mathsf{a}})-\delta,0) + \max_{p\in P(e)} (d(p,v_{b})-\delta,0) \geq \ell_{e},$$

with $P(e) \subseteq P$.

Less binary variables, smaller big-M.

MILP Model 1

miı	$\sum_{f\in\mathcal{F}}y_f$		(6a)
s.t.	$w_e \ge y_f$	$e \in E, f \in \mathcal{F}_{c}(e)$	(6b)
	$w_e \leq \sum_{f \in \mathcal{F}_c(e)} y_f$	$e \in E$	(6c)
	$x_v \ge 1 - \sum_{e \in E(v)} (1 - w_e)$	$v \in V$	(6d)
	$x_v \le w_e$	$v \in V, e \in E(v)$	(6e)
	$y_{v_{i'}'} + y_{e'} \leq 1$	$e' \in E, i' \in \{a, b\}$	(6f)
	$q_{e'} \leq l_{e'} y_{e'}$	$e' \in E$	(6g)
	$l_e(1-w_e) \le r_{v_a} + r_{v_b}$	$e \in E$	(6h)
	$x_v + \sum_{v' \in \mathcal{V}_{\mathrm{p}}(v)} z_{vv'} + \sum_{(e',i') \in \mathcal{EI}_{\mathrm{p}}(v)} z_{ve'i'} = 1$	$v \in V$	(6i)
	$z_{vv'} \leq y_{v'}$	$v \in V, v' \in \mathcal{V}_{\mathbf{p}}(v)$	(6j)
	$z_{ve'i'} \leq y_{e'}$	$v \in V, (e', i') \in \mathcal{EI}_{p}(v)$	(6k)
	$r_v \le M_v(1-x_v)$	$v \in V$	(6l)
	$r_v \le M_{vv'}(1 - z_{vv'}) + \delta - d(v, v')$	$v \in V, v' \in \mathcal{V}_{\mathbf{p}}(v)$	(6m)
	$r_v \le M_{ve'i'}(1 - z_{ve'i'}) + \delta - \tau_{ve'i'}(q_{e'})$	$v \in V, (e', i') \in \mathcal{EI}_{\mathbf{p}}(v)$	(6n)
	$y_f, w_e \in \{0, 1\}$	$f\in \mathcal{F}, e\in E$	(60)
	$x_{v}, z_{vv'}, z_{ve'i'} \in \{0, 1\}$	$v \in V, v' \in \mathcal{V}_{\mathbf{p}}(v), (e', i') \in \mathcal{EI}_{\mathbf{p}}(v)$	(6p)
	$q_{e'}, r_v \ge 0$	$e' \in E, v \in V.$	(6q)

≣ י? < פי 12 / 21 The previous modeling assumes short edges: $l_e \leq \delta$. Large edges?

- First approach: subdivide long edges into small edges.
- Second approach: directly model the covering condition on long edge.

Preprocessing: long edge modeling

Figure: Covering a long edge $e = (v_a, v_b)$

#facilities in Figures 4a and 4b = #facilities in Figure 4c +1. An indicator variable can model tansition of two states.

- The location of the left facility determines the other facility locations (2δ).
- Scalability (invariant to edge length): need only one indicator variable for state transition and a location variable for the left facility.
- Modification of MILP model 1: add specific variables and constraints for long edges, and other parts for small edges remain the same.

- Implementation is based on JuMP and written in Julia.
- lnput: a network and a cover radius δ .
- Output: the number of facilities and locations.
- Algorithmic options:
 - EF: Covering edges in network by Fröhlich.
 - ► F0/F: MILP model 1 without/with delimitation.
 - SF: MILP model 1 with delimitation and some valid inequalities.
 - RF: MILP model 2.

the relative dual gap is defined as:

$$\sigma := \frac{\overline{\mathbf{v}} - \underline{\mathbf{v}}}{\overline{\mathbf{v}}},$$

where \overline{v} is an upper-bound and \underline{v} is a lower-bound.

the relative primal bound

$$v_r := rac{\overline{v}}{n_{sd}},$$

- t: the total running time in CPU seconds.
- S/A/T: the number of solved instances/ the number of affected instances/ the number of total instances in the benchmark.

Ronchmark	Radius	EF				FO			
Dencimark		time	$\sigma(\%)$	$v_r(\%)$	S/A/T	time	$\sigma(\%)$	$v_r(\%)$	S/A/T
ai tu	Small	1800.0	100.0%	100.0%	0/0/9	1801.7	56.8%	83.3%	0/3/9
CIUY	Large	1800.0	100.0%	100.0%	0/0/9	1800.9	42.3%	36.2%	0/6/9
V man a sum A	Small	1800.0	100.0%	100.0%	0/0/11	1802.6	25.1%	85.0%	0/11/11
Kgroup_A	Large	1800.0	100.0%	100.0%	0/0/11	139.2	14.7%	19.2%	7/11/11
Kamana D	Small	1800.0	100.0%	100.0%	0/0/12	1800.4	92.6%	98.8%	0/1/12
Kgroup_B	Large	1800.0	100.0%	100.0%	0/0/12	1800.1	93.2%	86.6%	0/1/12
	Small	1800.0	100.0%	100.0%	0/0/12	16.8	15.9%	54.8%	9/12/12
random_A	Large	1800.0	100.0%	100.0%	0/0/12	0.2	25.5%	19.5%	12/12/12
man dam D	Small	1800.0	100.0%	100.0%	0/0/12	1317.6	36.4%	63.3%	1/12/12
random_B	Large	1800.0	100.0%	100.0%	0/0/12	154.4	26.0%	10.0%	11/12/12
	Small	1800.0	100.0%	100.0%	0/0/56	625.8	37.4%	74.8%	10/39/56
	Large	1800.0	100.0%	100.0%	0/0/56	132.5	33.1%	25.9%	30/42/56

Table: Results for continuous models

Bonchmark	Radius	F				SF			
Dencimark		time	$\sigma(\%)$	v _r (%)	S/A/T	time	$\sigma(\%)$	<i>v</i> _r (%)	S/A/T
aitu	Small	1802.9	29.5%	62.2%	0/9/9	1801.3	30.1%	66.9%	0/9/9
CILY	Large	1801.2	28.4%	21.7%	0/9/9	1800.9	29.1%	21.7%	0/9/9
Kanoun A	Small	1803.0	33.1%	82.2%	0/11/11	1801.3	32.0%	80.6%	0/11/11
Kgroup_A	Large	238.0	18.9%	19.1%	8/11/11	300.8	19.0%	19.1%	8/11/11
Kanoun P	Small	1800.6	80.8%	240.5%	0/12/12	1801.4	79.7%	191.9%	0/12/12
Kgroup_B	Large	1800.4	85.1%	80.5%	0/12/12	1800.7	85.9%	77.3%	0/12/12
	Small	20.2	16.5%	54.3%	9/12/12	16.1	17.1%	54.9%	9/12/12
random_A	Large	0.3	25.5%	19.5%	12/12/12	0.2	10.4%	17.9%	12/12/12
man dam D	Small	1574.2	38.8%	64.9%	1/12/12	1501.2	40.0%	67.5%	1/12/12
random_B	Large	220.5	19.9%	10.3%	9/12/12	175.7	18.8%	10.0%	11/12/12
	Small	675.0	35.2%	86.2%	10/56/56	637.6	35.5%	83.6%	10/56/56
	Large	163.0	30.2%	23.6%	29/56/56	160.9	24.9%	22.8%	31/56/56

Table: Results for continuous models

Bonchmark	Radius	RF						
Dencimark	Traulus	time	σ (%)	$v_r(\%)$	S/A/T			
citu	Small	1804.4	16.2%	54.1%	0/9/9			
CIUY	Large	1801.5	25.8%	21.3%	0/9/9			
Kamaun A	Small	1622.6	21.5%	77.5%	1/11/11			
Kgroup_A	Large	158.9	19.2%	19.3%	8/11/11			
Kamaum D	Small	1800.9	59.1%	154.2%	0/12/12			
vgroup_p	Large	1800.6	75.5%	63.3%	0/12/12			
mandam A	Small	15.9	8.1%	54.3%	9/12/12			
random_A	Large	0.3	26.6%	19.8%	12/12/12			
mandam D	Small	1304.3	38.5%	63.8%	1/12/12			
	Large	190.2	19.8%	11.2%	9/12/12			
	Small	604.9	23.7%	75.4%	11/56/56			
	Large	146.6	29.2%	22.8%	29/56/56			

Table: Results for continuous models

- New preprocssing and MILP models for continuous set-covering on networks.
- An open source implementation: https://github.com/lidingxu/cflg .
- Pelegrín, Mercedes, and Liding Xu. "Continuous covering on networks: Improved mixed integer programming formulations." Omega (2023): 102835.