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Set covering problems on networks

▶ Consider a network N = (V ,A),

▶ Every edge in A is a continuum.

▶ C (N) is the union of edges A and nodes N.

▶ We aim to cover C (N) rather than V .
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Set covering problems on networks

(a) two facilities points p
and p′

▶ Let d(p1, p2) measure the shortest path distance between two
points p1 and p2 in C (N).

▶ Each point p ∈ C (N) can cover the points in C (N) with
distance at most δ.
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Extensions of set covering problems on networks

Here we use F to denote the set of facility locations, and D to
denote the set of demands.

▶ Discrete: F = D = V , a classical set covering problem.

▶ Semi-continuous: either F = C (N) or D = C (N), reduced to
the classical set covering problem (tractable).

▶ Continuous: both F = D = C (N), the continuous set
covering on networks.
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How to continuously cover an edge

(a) By two points
(b) By one point, through
both ends

(c) By one point, trough
one end

Figure: Covering of an edge e = (va, vb) ∈ E
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Existing exact approach: MILP

▶ The only existing MILP formulation is by Fröhlich et al.,
“Covering edges in network”.

▶ Basic assumption: edge length is at most δ.

▶ The existing MILP assumes that every pair of edges can cover
each other, so the size is large.

▶ MIP solvers cannot solve this MILP for moderate networks.
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Our contribution

In practice, many edges are far away, and edge lengths can greater
than δ.

▶ Various preprocessing techniques: delimitation and modelling
long edges.

▶ Two main new MILP models and some strengthening
technique.

▶ An open-source implementation.
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Modeling the facilities

We want to label/index a set of potential facilities.

▶ Two types of facility index: N ∪ A.

▶ 0-1 facility variables y ∈ {0, 1}: 1 for installed, 0 for not
installed.

▶ Node facilities: yv associated node v ∈ N.

▶ Edge facilities: ye associated edge e ∈ A, with a free location
variable qe ∈ [0, ℓe ].

▶ These variables determine P ⊂ C (N), locations of installed
facilities.
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Modeling the covering condition

(a) By two points

▶ The residual cover rva , rvb : the truncated length of covering
paths.

rv := max
p∈P

(d(p, v)− δ, 0).

▶ The edge e = (va, vb) is covered if rva + rvb ≥ ℓe (the length
of e).
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Modeling the covering condition

▶
max
p∈P

(d(p, va)− δ, 0) + max
p∈P

(d(p, vb)− δ, 0) ≥ ℓe

is a concave constraint.

▶
max
p∈P

(d(p, va)− δ, 0),max
p∈P

(d(p, vb)− δ, 0)

are piece-wise linear functions.

▶ big-M technique (with extra binary variables) models
max, argmax of piece-wise linear functions.

▶ Inner representation: d(p, va), d(p, vb) are linear constraints
on y , q.
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Preprocessing: delimitation

A facility in an edge can only cover its neighbors locally (distance
at most δ)!

▶ delimitation: a concrete characterization (covers) of
δ-neighbors for edges and facilities.

▶ potential covers, complete covers, and partial

covers.

▶ Simple covering condition:

max
p∈P(e)

(d(p, va)− δ, 0) + max
p∈P(e)

(d(p, vb)− δ, 0) ≥ ℓe ,

with P(e) ⊆ P.

▶ Less binary variables, smaller big-M.

11 / 21



MILP Model 1
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Preprocessing: long edge modeling

The previous modeling assumes short edges: le ≤ δ. Large edges?

▶ First approach: subdivide long edges into small edges.

▶ Second approach: directly model the covering condition on
long edge.
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Preprocessing: long edge modeling

(a) A facility is located at va (qe = 0)

(b) A facility is located at the tail
(0 < qe ≤ l̂e)

(c) No facility is located at the tail
(̂le < qe ≤ 2δ)

Figure: Covering a long edge e = (va, vb)

#facilities in Figures 4a and 4b = #facilities in Figure 4c +1. An
indicator variable can model tansition of two states.
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MILP model 2

▶ The location of the left facility determines the other facility
locations (2δ).

▶ Scalability (invariant to edge length): need only one indicator
variable for state transition and a location variable for the left
facility.

▶ Modification of MILP model 1: add specific variables and
constraints for long edges, and other parts for small edges
remain the same.
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Algorithmic tool: CFLG.jl

▶ Implementation is based on JuMP and written in Julia.

▶ Input: a network and a cover radius δ.

▶ Output: the number of facilities and locations.
▶ Algorithmic options:

▶ EF: Covering edges in network by Fröhlich.
▶ F0/F: MILP model 1 without/with delimitation.
▶ SF: MILP model 1 with delimitation and some valid

inequalities.
▶ RF: MILP model 2.
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Performance metric

▶ the relative dual gap is defined as:

σ :=
v − v

v
,

where v is an upper-bound and v is a lower-bound.

▶ the relative primal bound

vr :=
v

nsd
,

▶ t: the total running time in CPU seconds.

▶ S/A/T: the number of solved instances/ the number of
affected instances/ the number of total instances in the
benchmark.
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Experimental results I

Benchmark Radius
EF F0

time σ(%) vr (%) S/A/T time σ(%) vr (%) S/A/T

city
Small 1800.0 100.0% 100.0% 0/0/9 1801.7 56.8% 83.3% 0/3/9
Large 1800.0 100.0% 100.0% 0/0/9 1800.9 42.3% 36.2% 0/6/9

Kgroup A
Small 1800.0 100.0% 100.0% 0/0/11 1802.6 25.1% 85.0% 0/11/11
Large 1800.0 100.0% 100.0% 0/0/11 139.2 14.7% 19.2% 7/11/11

Kgroup B
Small 1800.0 100.0% 100.0% 0/0/12 1800.4 92.6% 98.8% 0/1/12
Large 1800.0 100.0% 100.0% 0/0/12 1800.1 93.2% 86.6% 0/1/12

random A
Small 1800.0 100.0% 100.0% 0/0/12 16.8 15.9% 54.8% 9/12/12
Large 1800.0 100.0% 100.0% 0/0/12 0.2 25.5% 19.5% 12/12/12

random B
Small 1800.0 100.0% 100.0% 0/0/12 1317.6 36.4% 63.3% 1/12/12
Large 1800.0 100.0% 100.0% 0/0/12 154.4 26.0% 10.0% 11/12/12

all
Small 1800.0 100.0% 100.0% 0/0/56 625.8 37.4% 74.8% 10/39/56
Large 1800.0 100.0% 100.0% 0/0/56 132.5 33.1% 25.9% 30/42/56

Table: Results for continuous models
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Experimental results II

Benchmark Radius
F SF

time σ(%) vr (%) S/A/T time σ(%) vr (%) S/A/T

city
Small 1802.9 29.5% 62.2% 0/9/9 1801.3 30.1% 66.9% 0/9/9
Large 1801.2 28.4% 21.7% 0/9/9 1800.9 29.1% 21.7% 0/9/9

Kgroup A
Small 1803.0 33.1% 82.2% 0/11/11 1801.3 32.0% 80.6% 0/11/11
Large 238.0 18.9% 19.1% 8/11/11 300.8 19.0% 19.1% 8/11/11

Kgroup B
Small 1800.6 80.8% 240.5% 0/12/12 1801.4 79.7% 191.9% 0/12/12
Large 1800.4 85.1% 80.5% 0/12/12 1800.7 85.9% 77.3% 0/12/12

random A
Small 20.2 16.5% 54.3% 9/12/12 16.1 17.1% 54.9% 9/12/12
Large 0.3 25.5% 19.5% 12/12/12 0.2 10.4% 17.9% 12/12/12

random B
Small 1574.2 38.8% 64.9% 1/12/12 1501.2 40.0% 67.5% 1/12/12
Large 220.5 19.9% 10.3% 9/12/12 175.7 18.8% 10.0% 11/12/12

all
Small 675.0 35.2% 86.2% 10/56/56 637.6 35.5% 83.6% 10/56/56
Large 163.0 30.2% 23.6% 29/56/56 160.9 24.9% 22.8% 31/56/56

Table: Results for continuous models
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Experimental results III

Benchmark Radius
RF

time σ(%) vr (%) S/A/T

city
Small 1804.4 16.2% 54.1% 0/9/9
Large 1801.5 25.8% 21.3% 0/9/9

Kgroup A
Small 1622.6 21.5% 77.5% 1/11/11
Large 158.9 19.2% 19.3% 8/11/11

Kgroup B
Small 1800.9 59.1% 154.2% 0/12/12
Large 1800.6 75.5% 63.3% 0/12/12

random A
Small 15.9 8.1% 54.3% 9/12/12
Large 0.3 26.6% 19.8% 12/12/12

random B
Small 1304.3 38.5% 63.8% 1/12/12
Large 190.2 19.8% 11.2% 9/12/12

all
Small 604.9 23.7% 75.4% 11/56/56
Large 146.6 29.2% 22.8% 29/56/56

Table: Results for continuous models
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Conclusion

▶ New preprocssing and MILP models for continuous
set-covering on networks.

▶ An open source implementation:
https://github.com/lidingxu/cflg .

▶ Pelegŕın, Mercedes, and Liding Xu. ”Continuous covering on
networks: Improved mixed integer programming
formulations.” Omega (2023): 102835.
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