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Intersection cuts

The goal of intersection cuts: convexify hard non-convex sets.

» Given a complex set S, we want to tighten a polyhedral outer
approximation P of S;

» The polyhedral outer approximation (an LP relaxation) should
be constructed a priori.

» Useful for LP-based solvers.
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History and recent development

History:
» Concave programs (Hoang 1964): S is the epigraph of a
concave function;
» Integer programs (Balas 1971): S is a lattice:

» Linear complementary programs (Ibaraki 1973): Sis a
complementary condition x;x; = 0.
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History and recent development

Recent development (in non-convex MINLPs):
» Bilevel programs (Fischetti 2018);

» Factorable Programs (Serrano 2019): S is a sublevel set of a
difference of concave functions;
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History and recent development

Recent development (in non-convex MINLPs):
» Bilevel programs (Fischetti 2018);

» Factorable Programs (Serrano 2019): S is a sublevel set of a
difference of concave functions;

» Extended formulation of quadratic/polynomial programs
(Bienstock 2020): S is an outer product set (set of rank-1
matrices):

» Projected formulation of quadratic programs (Mufioz 2022): S
is a sublevel set of a quadratic function (quadratic constraint).
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Cut construction methods: phase 1

Preparation phase:

» Assumption: a point z/ ¢ S, and a corner polyhedron
(simplicial cone) R pointed at Z’.
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Cut construction methods: phase 1

Preparation phase:
» Assumption: a point z/ ¢ S, and a corner polyhedron
(simplicial cone) R pointed at z’.
» How to obtain?

P optimizing a relaxation problem over the polyhedral outer
approximation P.

» 7' is the optimal solution at a vertex of P.

» find edges of P adjacent to Z/, these edges’ convex hull is R.
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Visualization of preparation phase

Nonconvex S is enclosed by red border.
Polyheral outer approximation P is the outer polytope.
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Cut construction methods: phase 2

Set construction phase:

Definition
Given § € RP, a closed set C is called S-free, if the following
conditions are satisfied:

1. C is convex;
2. inter(C)NS = 0.

Find an S-free set C containing Z'.
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Visualization of set construction phase

E is the relaxation point,
Cis the circle containing it. 9/29



Cut construction methods: phase 3

Separation phase:
P Intersect the corner polyhedron R with the set C.

» Intersection points support a separating hyperplane (an
intersection cut).
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Visualization of separation phase

rays ED, EF defines the corner polyhedron R.

K, L are two intersection points and support a cut.
P PP 11/29



Separation problem reduction

» Phase 1 and 3 are standard procedures.

» The only non-standard (non-trivial) procedure is Phase 2.
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Separation problem reduction

» Phase 1 and 3 are standard procedures.
» The only non-standard (non-trivial) procedure is Phase 2.

» Larger S-fee set gives rise to stronger cuts, so maximal S-free
set is good.

> We next review methods to construct S-free sets in Phase 2.
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Lattice sets

» Integer Programming: S is a lattice (the set of integer points).
» Maximal lattice-free sets in R?:

» Splits;

» Triangles;

» Quadrilaterals;

» Gomory's Mixed Integer Cuts are split intersection cuts.
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Visualization of lattice-free sets
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Sublevel set of difference of concave (convex) forms

Theorem (Khamisov 1999,Serrano 2019)

Assume S := {z € RP : fi(z) — fr(z) < 0}, where f1, f, are concave
functions. Then, for z' € dom(f),

Cy:={z€RP:fi(z) — K(Z) - Vh(Z) (z - Z') > 0} is a S-free
set.
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Sublevel set of difference of concave (convex) forms

Theorem (Khamisov 1999,Serrano 2019)

Assume S := {z € RP : fi(z) — fr(z) < 0}, where f1, f, are concave
functions. Then, for z' € dom(f),

Cy:={z€RP:fi(z) — K(Z) - Vh(Z) (z - Z') > 0} is a S-free
set.

Theorem (Serrano 2021)

Assume § := {z € RP : fi(z) — f2(z) < 0}, where fi, f, are concave
functions and positive-homogeneous of degree-1. Then, for

Z' € dom(h),

Cyo:={z€RP:fi(z) - H(Z)~Vh(Z)(z—2)>0}isa
maximal S-free set.

Remark: for some case, positive-homogeneity of one concave
function can be relaxed.
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Visualization of a sublevel-free set
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Polynomial /signomial programming

Z ik H Xjakj (1a)

kekKo  j€ln]
vielm > ax][x¥ <0 (1b)
kek;  jeln]

where IC is the index set for the whole monomial terms
{IL;er vak’}ke;g, Ko and K; are its subsets.

» Polynomial programming: «ay; € Z (nonegative integer);

» Signomial programming: ay; € R (real);
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Examples: extended formulation of polynomial

programming

Dense lifting: a polynomial program can be lifted to an LP +
rank-1 condition on a matrix X (Bienstock 2020).

» Xijj represents a product of two monomial terms.
» Theorem: if X is rank one, then the determinants of its 2-by-2
Minors are zeros;

)

» Example of a principle minor: X;; X — X.Jz. =0.
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Examples: extended formulation of polynomial

programming

Dense lifting: a polynomial program can be lifted to an LP +
rank-1 condition on a matrix X (Bienstock 2020).

» Xijj represents a product of two monomial terms.

» Theorem: if X is rank one, then the determinants of its 2-by-2
Minors are zeros;

» Example of a principle minor: X;; X — X,-JZ- =0.

» Reformulation: (X + Xj;)? — (Xii — X;)? = 4XI.J2.;

» DCC equivalence: (Xji + XJ-J-)2 —(Xii — XJ-J-)2 — 4XI.12. < 0 and
(Xii + X5)? = (Xii — Xjj)? — 4X7 > 0;
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Examples: extended formulation of signomial programming

Sparse lifting: a signomial program can be lifted to an LP +
condition y = x® (our working paper).
» Signomial-term-set S = {(x,y) € R} xRy :y < x“}, where
« is an exponent vector with negative and/or positive entries;
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Examples: extended formulation of signomial programming

Sparse lifting: a signomial program can be lifted to an LP +
condition y = x® (our working paper).
» Signomial-term-set S = {(x,y) € R} xRy :y < x“}, where
« is an exponent vector with negative and/or positive entries;
» After some transformation,
S={(u,v) eRE xR/ : uP —v7 <0}, where
max([| 8|1, [|7[l1) = 1 and 5,7 > 0.

19/29



Examples: extended formulation of signomial programming

Sparse lifting: a signomial program can be lifted to an LP +
condition y = x® (our working paper).
» Signomial-term-set S = {(x,y) € R} xRy :y < x“}, where
« is an exponent vector with negative and/or positive entries;
» After some transformation,
S={(u,v) eRE xR/ : uP —v7 <0}, where
max([| 8|1, [|7[l1) = 1 and 5,7 > 0.
> Intersection cuts: u®, v are power functions (whose

hypograph are power cone representable) and concave, S now
is in the difference of concave form;
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Examples: extended formulation of signomial programming

» Factorable programming: u” is concave, so it
under-estimators can be constructed by factorization. For

instance, u{-5ud-3ud-? < t is reverse convex.

» (conventional) multilinear factorization:
u)® <, u3? <, ud? <3ttty <
o otian- 1/0-6,,0.4 0.5,0.5
> (new) power factorization: uj uz® < ty,up”t; < t. We can

; 0.6,04 05,05
give convex envelopes of uy°u3™, uj>t;".
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Supporting intersection cuts

» In the future, we will find more families of S-free sets.

» Users want to quickly know the performance of cuts from
their S-free sets in a real solver, rather than manually
constructing polyhedral outer approximation.

> A callback-based solution.

21/29



Pipeline of intersection cuts

» Phase 1 deals with simplex tableau and construct corner
polyhedron (standard).

» Phase 3 finds intersection points (standard).
» Non-standard: phase 2, defining an S-free set.
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Defining S-free set

An S-free set is C := {z € D : g(z) > 0}, D is a domain, and
g(Z') = 0.

P> g is concave over D.
» A sublevel-free set C := {z € D : g(z) > 0}.
1, zeDnC

> Arbitrary set C (like lattice-free): g(z) = { _
—00, otherwise.

is an indicator function.

Interface: the user needs to register the defining-variables of C and
domain D.

23/29



Oracle access and separation

Defining C is equivalent to defining Oth-order (function value)
access to g(z), optional: 1th-order (gradient value) oracle access
to g(z).
» The separation problem: find intersection point of ray z/ + tr
(t > 0) with C, where r is an extreme ray of the corner
polyhedron R;

» Equivalently, find root of the 1d function g(z’ + tr);
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Oracle access and separation

Defining C is equivalent to defining Oth-order (function value)
access to g(z), optional: 1th-order (gradient value) oracle access
to g(z).
» The separation problem: find intersection point of ray z/ + tr
(t > 0) with C, where r is an extreme ray of the corner
polyhedron R;

» Equivalently, find root of the 1d function g(z’ + tr);
» Bisection root finding: Oth-order oracle access.
> Newton root finding: Oth-order and 1th-order oracle access.

Interface: user provides Oth-order and 1th-order oracle access.
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Abstract functions of the callback

Setting:
» BisectionOrNewtion: TRUE or FALSE.
Minimal interface functions
> Register(): register variables and domain for an S-free set.
» ZeroOrderOracle(): Oth-order access.
» FirstOrderOracle(): 1st-order access.

The callback automatically extracts corner polyhedron, finds roots,
and checks numerical stability.
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Intersection cuts can be dense and thus numerically dangerous.
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Strengthenning methods

We can at best approximate conv(C°NR), and R is a loose
relaxation of P. Balas's original (generalized) intersection cuts
definition: R is P.

» Consider variables’ bounds: Chielma 2022.

» Consider bounded simplex paths from a relaxation point, more
edges of P are considered: Balas 2022.
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Comparing lift-and-project

When C is a polyhedron,
» Intersection cuts for (conv(C< N'R)) is weaker than lift-project
cuts (conv(Cc N P)).
> Assume P = R, intersection cuts are then equivalent to
lift-and-project cuts

When C is not polyhedron

» Only Intersection cuts works.
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