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Intersection cuts

The goal of intersection cuts: convexify hard non-convex sets.

▶ Given a complex set S, we want to tighten a polyhedral outer
approximation P of S;

▶ The polyhedral outer approximation (an LP relaxation) should
be constructed a priori.

▶ Useful for LP-based solvers.
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History and recent development

History:

▶ Concave programs (Hoang 1964): S is the epigraph of a
concave function;

▶ Integer programs (Balas 1971): S is a lattice:

▶ Linear complementary programs (Ibaraki 1973): S is a
complementary condition xixj = 0.
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History and recent development

Recent development (in non-convex MINLPs):

▶ Bilevel programs (Fischetti 2018);

▶ Factorable Programs (Serrano 2019): S is a sublevel set of a
difference of concave functions;

▶ Extended formulation of quadratic/polynomial programs
(Bienstock 2020): S is an outer product set (set of rank-1
matrices):

▶ Projected formulation of quadratic programs (Muñoz 2022): S
is a sublevel set of a quadratic function (quadratic constraint).
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Cut construction methods: phase 1

Preparation phase:

▶ Assumption: a point z ′ /∈ S, and a corner polyhedron
(simplicial cone) R pointed at z ′.

▶ How to obtain?
▶ optimizing a relaxation problem over the polyhedral outer

approximation P.
▶ z ′ is the optimal solution at a vertex of P.
▶ find edges of P adjacent to z ′, these edges’ convex hull is R.
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Visualization of preparation phase
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Cut construction methods: phase 2

Set construction phase:

Definition
Given S ∈ Rp, a closed set C is called S-free, if the following
conditions are satisfied:

1. C is convex;

2. inter(C) ∩ S = ∅.

Find an S-free set C containing z ′.
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Visualization of set construction phase
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Cut construction methods: phase 3

Separation phase:

▶ Intersect the corner polyhedron R with the set C.
▶ Intersection points support a separating hyperplane (an

intersection cut).
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Visualization of separation phase
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Separation problem reduction

▶ Phase 1 and 3 are standard procedures.

▶ The only non-standard (non-trivial) procedure is Phase 2.

▶ Larger S-fee set gives rise to stronger cuts, so maximal S-free
set is good.

▶ We next review methods to construct S-free sets in Phase 2.
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Lattice sets

▶ Integer Programming: S is a lattice (the set of integer points).
▶ Maximal lattice-free sets in R2:

▶ Splits;
▶ Triangles;
▶ Quadrilaterals;

▶ Gomory’s Mixed Integer Cuts are split intersection cuts.
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Visualization of lattice-free sets
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Sublevel set of difference of concave (convex) forms

Theorem (Khamisov 1999,Serrano 2019)

Assume S := {z ∈ Rp : f1(z)− f2(z) ≤ 0}, where f1, f2 are concave
functions. Then, for z ′ ∈ dom(f2),
Cz ′ := {z ∈ Rp : f1(z)− f2(z

′)−∇f2(z
′)⊤(z − z ′) ≥ 0} is a S-free

set.

Theorem (Serrano 2021)

Assume S := {z ∈ Rp : f1(z)− f2(z) ≤ 0}, where f1, f2 are concave
functions and positive-homogeneous of degree-1. Then, for
z ′ ∈ dom(f2),
Cz ′ := {z ∈ Rp : f1(z)− f2(z

′)−∇f2(z
′)⊤(z − z ′) ≥ 0} is a

maximal S-free set.

Remark: for some case, positive-homogeneity of one concave
function can be relaxed.
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Visualization of a sublevel-free set
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Polynomial/signomial programming

max
∑
k∈K0

aik
∏
j∈[n]

x
αkj

j (1a)

∀i ∈ [m]
∑
k∈Ki

aik
∏
j∈[n]

x
αkj

j ≤ 0 (1b)

where K is the index set for the whole monomial terms
{
∏

j∈[n] x
αkj

j }k∈K, K0 and Ki are its subsets.

▶ Polynomial programming: αkj ∈ Z+ (nonegative integer);

▶ Signomial programming: αkj ∈ R (real);
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Examples: extended formulation of polynomial
programming

Dense lifting: a polynomial program can be lifted to an LP +
rank-1 condition on a matrix X (Bienstock 2020).

▶ Xij represents a product of two monomial terms.

▶ Theorem: if X is rank one, then the determinants of its 2-by-2
minors are zeros;

▶ Example of a principle minor: XiiXjj − X 2
ij = 0.

▶ Reformulation: (Xii + Xjj)
2 − (Xii − Xjj)

2 = 4X 2
ij ;

▶ DCC equivalence: (Xii + Xjj)
2 − (Xii − Xjj)

2 − 4X 2
ij ≤ 0 and

(Xii + Xjj)
2 − (Xii − Xjj)

2 − 4X 2
ij ≥ 0;
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Examples: extended formulation of signomial programming

Sparse lifting: a signomial program can be lifted to an LP +
condition y = xα (our working paper).

▶ Signomial-term-set S = {(x , y) ∈ Rn
+ × R+ : y ≤ xα}, where

α is an exponent vector with negative and/or positive entries;

▶ After some transformation,
S = {(u, v) ∈ Rh

+ × Rl
+ : uβ − vγ ≤ 0}, where

max(∥β∥1, ∥γ∥1) = 1 and β, γ ≥ 0.

▶ Intersection cuts: uβ, vγ are power functions (whose
hypograph are power cone representable) and concave, S now
is in the difference of concave form;
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Examples: extended formulation of signomial programming

▶ Factorable programming: uβ is concave, so it
under-estimators can be constructed by factorization. For
instance, u0.51 u0.32 u0.23 ≤ t is reverse convex.

▶ (conventional) multilinear factorization:
u0.51 ≤ t1, u

0.3
2 ≤ t2, u

0.2
3 ≤ t3, t1t2t3 ≤ t.

▶ (new) power factorization: u0.62 u0.43 ≤ t1, u
0.5
1 t0.51 ≤ t. We can

give convex envelopes of u0.62 u0.43 , u0.51 t0.51 .
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Supporting intersection cuts

▶ In the future, we will find more families of S-free sets.

▶ Users want to quickly know the performance of cuts from
their S-free sets in a real solver, rather than manually
constructing polyhedral outer approximation.

▶ A callback-based solution.
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Pipeline of intersection cuts

▶ Phase 1 deals with simplex tableau and construct corner
polyhedron (standard).

▶ Phase 3 finds intersection points (standard).

▶ Non-standard: phase 2, defining an S-free set.
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Defining S-free set

An S-free set is C := {z ∈ D : g(z) ≥ 0}, D is a domain, and
g(z ′) ≥ 0.

▶ g is concave over D.

▶ A sublevel-free set C := {z ∈ D : g(z) ≥ 0}.

▶ Arbitrary set C (like lattice-free): g(z) =

{
1, z ∈ D ∩ C
−∞, otherwise.

is an indicator function.

Interface: the user needs to register the defining-variables of C and
domain D.
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Oracle access and separation

Defining C is equivalent to defining 0th-order (function value)
access to g(z), optional: 1th-order (gradient value) oracle access
to g(z).

▶ The separation problem: find intersection point of ray z ′ + tr
(t ≥ 0) with C, where r is an extreme ray of the corner
polyhedron R;

▶ Equivalently, find root of the 1d function g(z ′ + tr);

▶ Bisection root finding: 0th-order oracle access.

▶ Newton root finding: 0th-order and 1th-order oracle access.

Interface: user provides 0th-order and 1th-order oracle access.
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Root finding

25 / 29



Abstract functions of the callback

Setting:

▶ BisectionOrNewtion: TRUE or FALSE.

Minimal interface functions

▶ Register(): register variables and domain for an S-free set.

▶ ZeroOrderOracle(): 0th-order access.

▶ FirstOrderOracle(): 1st-order access.

The callback automatically extracts corner polyhedron, finds roots,
and checks numerical stability.
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Limitations

Intersection cuts can be dense and thus numerically dangerous.
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Strengthenning methods

We can at best approximate conv(Cc ∩R), and R is a loose
relaxation of P. Balas’s original (generalized) intersection cuts
definition: R is P.

▶ Consider variables’ bounds: Chielma 2022.

▶ Consider bounded simplex paths from a relaxation point, more
edges of P are considered: Balas 2022.

28 / 29



Comparing lift-and-project

When C is a polyhedron,

▶ Intersection cuts for (conv(Cc ∩R)) is weaker than lift-project
cuts (conv(Cc ∩ P)).

▶ Assume P = R, intersection cuts are then equivalent to
lift-and-project cuts

When C is not polyhedron

▶ Only Intersection cuts works.
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